A074832 Primes whose binary reversal is also prime.
3, 5, 7, 11, 13, 17, 23, 29, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 83, 97, 101, 107, 113, 127, 131, 151, 163, 167, 173, 181, 193, 197, 199, 223, 227, 229, 233, 251, 257, 263, 269, 277, 283, 307, 313, 331, 337, 349, 353, 359, 373, 383, 409, 421, 431, 433, 443
Offset: 1
Examples
349 = 101011101, reverse the sequence of ones and zeros: 101110101 = 373 which is also prime.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- K. S. Brown's Mathpages, Reflective and Cyclic Sets of Primes
- Cécile Dartyge, Bruno Martin, Joël Rivat, Igor E. Shparlinski, and Cathy Swaenepoel, Reversible primes, arXiv:2309.11380 [math.NT], 2023. See p. 3.
Crossrefs
Cf. A007500 (primes whose decimal reversal is also prime).
Programs
-
Mathematica
Prime[ Select[ Range[100], PrimeQ[ FromDigits[ Reverse[ IntegerDigits[ Prime[ # ], 2]], 2]] &]]
-
Python
from sympy import isprime, prime A074832 = [prime(n) for n in range(1,10**6) if isprime(int(bin(prime(n))[:1:-1],2))] # Chai Wah Wu, Aug 14 2014
Comments