cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074871 Start with n and repeatedly apply the map k -> T(k) = A053837(k) + A171765(k); a(n) is the number of steps (at least one) until a prime is reached, or 0 if no prime is ever reached.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 0, 0, 0, 1, 0, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 0, 1, 2, 2, 0, 1, 3, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 0, 1, 2, 2, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 2, 3, 1, 2, 1, 1, 0, 1, 1, 0, 1, 0
Offset: 1

Views

Author

Felice Russo, Sep 12 2002, Oct 11 2010

Keywords

Comments

The first occurrence of k beginning with 0: 1, 2, 17, 59, 337, 779, 16999, 6888888, ..., . - Robert G. Wilson v, Oct 20 2010

Examples

			T(2)=2. So in one step we reach a prime.
T(3)=3 and then in one step again we reach a prime.
T(4)=4 and we will never reach a prime.
T(11)=1+2=3 and again in one step we reach a prime.
T(17)=7+8=15 --> T(15)=5+6=11 and then in two steps we reach a prime.
T(13)=3+4=7 and then 1 step......
T(14)=4+5=9 --> T(9)=9 --> T(9)=9........ and we will never reach a prime.
		

Crossrefs

Cf. A053837, A171765. See A171772 for another version.

Programs

  • Mathematica
    g[n_] := Block[{id = IntegerDigits@ n}, Mod[ Plus @@ id, 10] + If[n < 10, 0, Times @@ id]]; f[n_] := Block[{lst = Rest@ NestWhileList[g, n, UnsameQ, All]}, lsp = PrimeQ@ lst; If[ Last@ Union@ lsp == False, 0, Position[lsp, True, 1, 1][[1, 1]]]]; Array[f, 105] (* Robert G. Wilson v, Oct 20 2010 *)

Extensions

Edited by N. J. A. Sloane, Oct 12 2010
More terms from Robert G. Wilson v, Oct 20 2010