A074877 Number of function calls required to compute ack(3,n), where ack denotes the Ackermann function.
15, 106, 541, 2432, 10307, 42438, 172233, 693964, 2785999, 11164370, 44698325, 178875096, 715664091, 2862983902, 11452590817, 45811673828, 183249316583, 733002509034, 2932020521709, 11728103058160, 46912454175475, 187649900587766, 750599770123001, 3002399416036092
Offset: 0
Links
- Gert Bultman, Ackermann function.
- Y. Sundblad, The Ackermann function. A theoretical, computational and formula manipulative study, Nordisk Tidskr. Informationsbehandling (BIT) 11 (1971), 107-119.
- Eric Weisstein's World of Mathematics, Ackermann function.
- Wikipedia, Ackermann function.
- Index entries for sequences related to Ackermann function
- Index entries for linear recurrences with constant coefficients, signature (8,-21,22,-8).
Programs
-
Magma
[128/3*4^n-40*2^n+3*n+37/3: n in [0..30]]; // Vincenzo Librandi, Apr 19 2015
-
Mathematica
Table[128 / 3 4^n - 40 2^n + 3 n + 37 / 3, {n, 0, 30}] (* Vincenzo Librandi, Apr 19 2015 *)
-
PARI
a(n)=128/3*4^n-40*2^n+3*n+37/3 \\ Charles R Greathouse IV, Dec 09 2011
Formula
G.f.: (15-14*x+8*x^2)/((4*x-1)*(2*x-1)*(x-1)^2); recurrence: a(n) = 8*a(n-1)-21*a(n-2)+22*a(n-3)-8*a(n-4); a(n) = 128/3*4^n-40*2^n+3*n+37/3 for n>=0. - Pab Ter (pabrlos(AT)yahoo.com), May 29 2004
a(n) ~ 128/3*4^n. [Charles R Greathouse IV, Dec 09 2011]
Extensions
Edited by Pab Ter (pabrlos(AT)yahoo.com), May 29 2004
More terms from Vincenzo Librandi, Apr 19 2015
Comments