cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074877 Number of function calls required to compute ack(3,n), where ack denotes the Ackermann function.

Original entry on oeis.org

15, 106, 541, 2432, 10307, 42438, 172233, 693964, 2785999, 11164370, 44698325, 178875096, 715664091, 2862983902, 11452590817, 45811673828, 183249316583, 733002509034, 2932020521709, 11728103058160, 46912454175475, 187649900587766, 750599770123001, 3002399416036092
Offset: 0

Views

Author

Jeff Medha (medha_jeff(AT)yahoo.co.in), Sep 12 2002

Keywords

Comments

The Ackermann function is defined recursively for nonnegative integers m,n by: ack(0,n) = n + 1 if m=0; ack(m,0) = ack(m-1,1) if m>0 and n=0; ack(m,n) = ack(m-1,ack(m,n-1)) otherwise.

Crossrefs

Two kinds of calls: A304370, A304371.

Programs

Formula

G.f.: (15-14*x+8*x^2)/((4*x-1)*(2*x-1)*(x-1)^2); recurrence: a(n) = 8*a(n-1)-21*a(n-2)+22*a(n-3)-8*a(n-4); a(n) = 128/3*4^n-40*2^n+3*n+37/3 for n>=0. - Pab Ter (pabrlos(AT)yahoo.com), May 29 2004
a(n) ~ 128/3*4^n. [Charles R Greathouse IV, Dec 09 2011]

Extensions

Edited by Pab Ter (pabrlos(AT)yahoo.com), May 29 2004
More terms from Vincenzo Librandi, Apr 19 2015