A074915 Largest x such that the number of nonprimes (i.e., 1 and composites) in the reduced residue set (RRS(x)) of x equals n, or 0 if there are no such numbers.
30, 60, 90, 84, 120, 210, 50, 150, 126, 180, 132, 168, 0, 138, 240, 144, 140, 330, 420, 130, 300, 92, 390, 234, 294, 228, 360, 222, 160, 246, 0, 336, 276, 630, 510, 450, 378, 152, 480, 280, 318, 196, 342, 660, 165, 396, 172, 546, 250, 840, 504, 408, 350, 600
Offset: 1
Keywords
Examples
One nonprime (=1) is in RRS of {1,2,3,4,6,8,12,18,24,30}; min=1, max=30. See A048597. Two nonprimes are in RRS of {5,10,14,20,42,60}; min=A072022(2), max = a(2) = 60 here. For entries of A072023 neither min nor max is believed to exist.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
PARI
lista(nn) = {my(v = vector(10^5, n, eulerphi(n) - (primepi(n) - omega(n)))); vector(nn, k, if (#(w=Vec(select(x->(x==k), v, 1))) == 0, 0, vecmax(w)));} \\ Michel Marcus, Feb 23 2020
Comments