A074919 Number of integers in {1, 2, ..., phi(n)} that are coprime to n.
1, 1, 2, 1, 4, 1, 6, 2, 4, 2, 10, 1, 12, 3, 5, 4, 16, 2, 18, 3, 7, 5, 22, 3, 16, 6, 12, 5, 28, 2, 30, 8, 13, 8, 17, 4, 36, 9, 15, 6, 40, 3, 42, 9, 13, 11, 46, 5, 36, 8, 21, 11, 52, 6, 29, 10, 23, 14, 58, 4, 60, 15, 20, 16, 36, 6, 66, 15, 29, 8, 70, 8, 72, 18, 21, 17, 47, 7, 78, 13, 36
Offset: 1
Keywords
Examples
There are four numbers in {1, 2, ..., phi(8) = 4} that are coprime to 8, i.e. 1, 3. Hence a(8) = 2.
Crossrefs
Cf. A000010.
Programs
-
Maple
A074919 := proc(n) local a,k ; a := 0 ; for k from 1 to numtheory[phi](n) do if igcd(k,n) = 1 then a := a+1 ; end if; end do: a ; end proc: seq(A074919(n),n=1..30) ; # R. J. Mathar, Feb 21 2017
-
Mathematica
h[n_] := Module[{l}, l = {}; For[i = 1, i <= EulerPhi[n], i++, If[GCD[i, n] == 1, l = Append[l, i]]]; l]; Table[Length[h[i]], {i, 1, 100}]
-
PARI
a(n)=sum(k=1,eulerphi(n),1==gcd(k,n)); \\ Joerg Arndt, Feb 21 2017
Formula
a(n) = Sum_{d|n} mu(d)*floor(phi(n)/d). - Ridouane Oudra, Sep 16 2022
Comments