cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075019 a(1) = 1; for n > 1, a(n) = the smallest prime divisor of the number C(n) formed from the concatenation of 1,2,3,... up to n.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 127, 2, 3, 2, 3, 2, 113, 2, 3, 2, 3, 2, 13, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 29, 2, 3, 2, 3, 2, 71, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 23, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 10386763, 2, 3, 2, 3, 2, 397, 2, 3, 2, 3, 2, 37907, 2, 3, 2, 3, 2, 73, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 37, 2, 3, 2
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Comments

Least prime factor of A007908(n). For 1 < n <= 5000, a(n) < A007908(n), but this should fail infinitely often (assuming standard heuristics). - Charles R Greathouse IV, Apr 10 2014
From Robert Israel, Aug 28 2015: (Start)
a(n) = 2 iff n is even.
a(n) = 3 iff n == 3 or 5 (mod 6).
a(n) = 5 iff n == 25 (mod 30). (End)

Examples

			a(5)= 3, 3 is the smallest prime divisor of 12345.
		

Crossrefs

Programs

  • Maple
    C:= 1: A[1]:= 1:
    for n from 2 to 100 do
    C:= C*10^(1+ilog10(n))+n;
    F:= map(t -> t[1],ifactors(C,'easy')[2]);
    if hastype(F,integer) then A[n]:= min(select(type,F,integer))
    else A[n]:= min(numtheory:-factorset(C))
    fi
    od:
    seq(A[n],n=1..100); # Robert Israel, Aug 28 2015
  • Mathematica
    a = {}; b = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, Length[w]}]; p = FromDigits[a]; AppendTo[b,First[First[FactorInteger[ p]]]], {n, 25}]; b (* Artur Jasinski, Apr 04 2008 *)
  • PARI
    lpf(n)=forprime(p=2,1e3,if(n%p==0,return(p))); factor(n)[1,1]
    print1(N=1);for(n=2,100,N=N*10^#Str(n)+n; print1(", "lpf(N))) \\ Charles R Greathouse IV, Apr 10 2014

Extensions

More terms from Sascha Kurz, Jan 03 2003