A075019 a(1) = 1; for n > 1, a(n) = the smallest prime divisor of the number C(n) formed from the concatenation of 1,2,3,... up to n.
1, 2, 3, 2, 3, 2, 127, 2, 3, 2, 3, 2, 113, 2, 3, 2, 3, 2, 13, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 29, 2, 3, 2, 3, 2, 71, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 23, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 10386763, 2, 3, 2, 3, 2, 397, 2, 3, 2, 3, 2, 37907, 2, 3, 2, 3, 2, 73, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 37, 2, 3, 2
Offset: 1
Examples
a(5)= 3, 3 is the smallest prime divisor of 12345.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000 (first 120 terms from Robert Israel)
Crossrefs
Programs
-
Maple
C:= 1: A[1]:= 1: for n from 2 to 100 do C:= C*10^(1+ilog10(n))+n; F:= map(t -> t[1],ifactors(C,'easy')[2]); if hastype(F,integer) then A[n]:= min(select(type,F,integer)) else A[n]:= min(numtheory:-factorset(C)) fi od: seq(A[n],n=1..100); # Robert Israel, Aug 28 2015
-
Mathematica
a = {}; b = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, Length[w]}]; p = FromDigits[a]; AppendTo[b,First[First[FactorInteger[ p]]]], {n, 25}]; b (* Artur Jasinski, Apr 04 2008 *)
-
PARI
lpf(n)=forprime(p=2,1e3,if(n%p==0,return(p))); factor(n)[1,1] print1(N=1);for(n=2,100,N=N*10^#Str(n)+n; print1(", "lpf(N))) \\ Charles R Greathouse IV, Apr 10 2014
Extensions
More terms from Sascha Kurz, Jan 03 2003
Comments