A075026 Define a number k to occupy a divisor cavity if d(k-1) > d(k) < d(k+1) where d(k) is the number of divisors of k. Sequence gives composite numbers occupying a divisor cavity.
9, 25, 49, 51, 55, 65, 69, 77, 91, 111, 115, 121, 125, 129, 153, 155, 161, 169, 175, 183, 185, 187, 209, 221, 235, 237, 247, 249, 259, 265, 267, 274, 287, 289, 291, 295, 305, 309, 319, 321, 323, 329, 339, 341, 343, 351, 355, 361, 365, 369, 371, 377, 386, 391
Offset: 0
Keywords
Programs
-
Maple
q:= k-> not isprime(k) and (d-> d(k-1)>d(k) and d(k)
Alois P. Heinz, Sep 28 2021 -
Mathematica
Select[Flatten[Position[Partition[DivisorSigma[0,Range[400]],3,1],?(#[[1]]> #[[2]]<#[[3]]&),1,Heads->False]]+1,CompositeQ] (* _Harvey P. Dale, Oct 23 2019 *)
Extensions
Corrected and extended by Jason Earls, Sep 04 2002