A075035 Numbers n such that tau(n) >= tau(n+1) >= tau(n+2) >= tau(n+3) where tau(n) = number of divisors of n.
20, 32, 44, 56, 80, 84, 92, 104, 116, 140, 170, 176, 200, 212, 216, 224, 230, 242, 260, 296, 300, 324, 332, 344, 374, 380, 392, 434, 440, 444, 464, 476, 500, 506, 512, 560, 594, 602, 608, 620, 632, 644, 650, 696, 704, 714, 715, 716, 740, 776, 800, 804, 836
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Position[Partition[DivisorSigma[0,Range[900]],4,1],?(Max[ Differences[ #]]< 1&),1,Heads->False]//Flatten (* _Harvey P. Dale, Sep 05 2019 *)
-
Python
from sympy import divisor_count as tau [n for n in range(1,901) if tau(n) >= tau(n+1) >= tau(n+2) >= tau(n+3)] # Karl V. Keller, Jr., Jul 10 2020
Extensions
More terms from Benoit Cloitre, Sep 07 2002