A075047 Numbers k whose prime factorization contains the same digits as k.
25, 121, 471663, 931225, 4473225, 6953931, 7301441, 10713728, 13246317, 17332133, 19367424, 34706961, 36310761, 54363717, 68714219, 73553125, 73641071, 74390183, 93478133, 102712448, 102941361, 109502361, 113162997, 115521875, 120934784, 134179011, 134381673, 134472875, 135478125
Offset: 1
Examples
25 = 5^2 and 121 = 11^2 are terms. The term 1971753273 -> 1,9,7,1,7,5,3,2,7,3 -> 1,1,2,3,3,5,7,7,7,9 is in the sequence because its factorization is 3^7*7^1*37^1*59^2 -> 3,7,7,1,3,7,1,5,9,2 -> 1,1,2,3,3,5,7,7,7,9 and this coincides with the digits of the term itself. - _Robert G. Wilson v_, Jun 06 2014
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000 (first 311 terms from Robert G. Wilson v)
Programs
-
Mathematica
fQ[n_] := Sort@ IntegerDigits@ n == Sort@ Flatten@ IntegerDigits@ FactorInteger@ n; k = 1; lst = {}; While[k < 100000001, If[ fQ@ k, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G. Wilson v, Jun 05 2014 *)
-
PARI
isok(n, b=10) = {f = factor(n); v = []; for (i=1, #f~, v = concat(v, digits(f[i,1], b)); v = concat(v, digits(f[i,2], b));); vecsort(v) == vecsort(digits(n, b));} \\ Michel Marcus, Jul 14 2015
Extensions
More terms from David Wasserman, Jan 02 2005
a(14)-a(23) from Donovan Johnson, Oct 10 2009
a(24)-a(29) from Robert G. Wilson v, Jun 06 2014
Comments