A075082 Numbers n such that n! is a product of distinct factorials k!*l!*m!*... with k, l, m, etc. < n.
1, 6, 10, 12, 16, 24, 48, 120, 144, 240, 288, 720, 1440, 2880, 4320, 5040, 5760, 8640, 10080, 17280, 30240, 34560, 40320, 60480, 80640, 86400, 103680, 120960, 172800, 207360, 241920, 362880, 483840, 518400, 604800, 725760, 967680, 1036800
Offset: 1
Keywords
Examples
1! = 0!, 6! = 5!*3!, 10! = 7!*6!, 12! = 11!*3!*2!, 16! = 14!*5!*2!, 24! = 23!*4!, 48! = 47!*4!*2!, 120! = 119!*5!, 144! = 143! *4!*3!, 240! = 239!*5!*2!, 288! = 287!*4!*3!*2!, 720! = 719!*6!, 1440! = 1439!6!*2!, etc.
References
- R. K. Guy, Unsolved Problems in Number Theory, B23.
Programs
-
Mathematica
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) s = Sort[ Table[ Times @@ Factorial /@ UnrankSubset[n, Table [i, {i, 2, 12}]], {n, 2047}]]; f[n_] := Block[{k = Prime[ PrimePi [n]]}, While[k < n && Position[s, Product[i, {i, k + 1, n}]] == {}, k+ + ]; If[k == n, 0, k]]; Do[a = f[n]; If[a != 0, Print[{n, a}]], {n, 3, 1210000}] (* Robert G. Wilson v, Jun 20 2005 *)
Extensions
Corrected and extended by Jud McCranie, Sep 13 2002
More terms from Jud McCranie, Jun 13 2005
a(25)-a(39) proposed by Robert G. Wilson v, Jun 18 2005, confirmed by David Wasserman, Dec 30 2005
Comments