cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075117 Table by antidiagonals of generalized Lucas numbers: T(n,k) = T(n,k-1) + n*T(n,k-2) with T(n,0)=2 and T(n,1)=1.

Original entry on oeis.org

2, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 4, 5, 1, 2, 1, 7, 7, 7, 1, 2, 1, 11, 17, 10, 9, 1, 2, 1, 18, 31, 31, 13, 11, 1, 2, 1, 29, 65, 61, 49, 16, 13, 1, 2, 1, 47, 127, 154, 101, 71, 19, 15, 1, 2, 1, 76, 257, 337, 297, 151, 97, 22, 17, 1, 2, 1, 123, 511, 799, 701, 506, 211, 127, 25, 19, 1, 2
Offset: 0

Views

Author

Henry Bottomley, Sep 02 2002

Keywords

Examples

			Array starts as:
  2, 1,  1,  1,  1,   1, ...;
  2, 1,  3,  4,  7,  11, ...;
  2, 1,  5,  7, 17,  31, ...;
  2, 1,  7, 10, 31,  61, ...;
  2, 1,  9, 13, 49, 101, ...;
  2, 1, 11, 16, 71, 151, ...; etc.
		

Crossrefs

Cf. A060959.
Columns include: A007395, A000012, A005408, A016777, A056220, A062786.

Programs

  • Magma
    [2^(1+k-n)*(&+[Binomial(n-k,2*j)*(1+4*k)^j: j in [0..Floor((n-k)/2)]]): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 27 2020
    
  • Maple
    seq(seq( 2^(1+k-n)*add( binomial(n-k, 2*j)*(1+4*k)^j, j=0..floor((n-k)/2)), k=0..n), n=0..13); # G. C. Greubel, Jan 27 2020
  • Mathematica
    T[n_, k_]:= ((1 + Sqrt[1+4n])/2)^k + ((1 - Sqrt[1+4n])/2)^k; Table[If[n==0 && k==0, 2, T[k, n-k]]//Simplify, {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 27 2020 *)
  • Sage
    def T(n, k): return 2^(1-k)*sum( binomial(k, 2*j)*(1+4*n)^j for j in (0..floor(k/2)) )
    [[T(k,n-k) for k in (0..n)] for n in (0..13)] # G. C. Greubel, Jan 27 2020

Formula

T(n, k) = ((1+sqrt(4*n+1))/2)^k + ((1-sqrt(4*n+1))/2)^k = 2*A060959(n, k+1) - A060959(n, k).
T(n, k) = 2^(1-k)*Sum_{j=0..floor(k/2)} binomial(k, 2*j)*(1+4*n)^j. - G. C. Greubel, Jan 27 2020