cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075178 Denominators of expansion of 1/x+1/log(1-x).

Original entry on oeis.org

2, 12, 12, 120, 20, 504, 168, 720, 180, 1320, 88, 65520, 10920, 5040, 720, 24480, 68, 28728, 3192, 39600, 27720, 182160, 1840, 1965600, 163800, 39312, 3024, 97440, 2320, 3437280, 229152, 3769920, 235620, 42840, 280, 138181680, 219336, 35568, 1872, 3247200
Offset: 0

Views

Author

Wolfdieter Lang, Sep 06 2002

Keywords

Comments

The numerator sequence is |A006232(n+1)|, n>=0.
|A006232(n+1)|= numerator(r(n)), n>=1, with r(n) := sum(|stirling1(n,k)|*B(k+1)/(k+1),k=1..n), n>=1 and B(n): =A027641(n)/A027642(n) (Bernoulli numbers) and stirling1(n,m)=A008275(n,m), n>=m>=1; r(0) := 1/2.

Examples

			r(n) sequence, n>=0: 1/2, 1/12, 1/12, 19/120, 9/20, 863/504, 1375/168, 33953/720, 57281/180,...
		

Crossrefs

Programs

  • Mathematica
    With[{nn=40},Denominator[CoefficientList[Series[1/x+1/Log[1-x], {x,0,nn}] ,x] Range[0,nn]!]] (* Harvey P. Dale, Feb 18 2012 *)
  • Sage
    def A075178_list(len):
        f, R, C = 1, [0], [1]+[0]*len
        for n in (1..len):
            for k in range(n, 0, -1):
                C[k] = -C[k-1] * k / (k + 1)
            C[0] = -sum(C[k] for k in (1..n))
            R.append((C[0]*f).denominator())
            f *= n
        return R[1:]
    print(A075178_list(40)) # Peter Luschny, Feb 21 2016

Formula

Denominators from e.g.f. 1/x + 1/log(1-x) (and of signed sequence from e.g.f. 1/x - 1/log(1+x)).
a(n) = denominator(r(n)), n>=0, with rational r(n) defined in one of the comments.