A075178 Denominators of expansion of 1/x+1/log(1-x).
2, 12, 12, 120, 20, 504, 168, 720, 180, 1320, 88, 65520, 10920, 5040, 720, 24480, 68, 28728, 3192, 39600, 27720, 182160, 1840, 1965600, 163800, 39312, 3024, 97440, 2320, 3437280, 229152, 3769920, 235620, 42840, 280, 138181680, 219336, 35568, 1872, 3247200
Offset: 0
Examples
r(n) sequence, n>=0: 1/2, 1/12, 1/12, 19/120, 9/20, 863/504, 1375/168, 33953/720, 57281/180,...
Programs
-
Mathematica
With[{nn=40},Denominator[CoefficientList[Series[1/x+1/Log[1-x], {x,0,nn}] ,x] Range[0,nn]!]] (* Harvey P. Dale, Feb 18 2012 *)
-
Sage
def A075178_list(len): f, R, C = 1, [0], [1]+[0]*len for n in (1..len): for k in range(n, 0, -1): C[k] = -C[k-1] * k / (k + 1) C[0] = -sum(C[k] for k in (1..n)) R.append((C[0]*f).denominator()) f *= n return R[1:] print(A075178_list(40)) # Peter Luschny, Feb 21 2016
Formula
Denominators from e.g.f. 1/x + 1/log(1-x) (and of signed sequence from e.g.f. 1/x - 1/log(1+x)).
a(n) = denominator(r(n)), n>=0, with rational r(n) defined in one of the comments.
Comments