cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075248 Number of solutions (x,y,z) to 5/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z.

Original entry on oeis.org

0, 1, 2, 1, 1, 3, 5, 9, 6, 3, 12, 5, 18, 15, 10, 5, 21, 11, 22, 18, 15, 8, 55, 30, 15, 20, 43, 20, 45, 5, 24, 35, 23, 36, 53, 10, 21, 52, 62, 6, 62, 12, 73, 69, 16, 11, 92, 38, 84, 34, 50, 11, 77, 56, 80, 45, 38, 34, 142, 6, 23, 96, 53, 53, 67, 15, 66, 70, 124, 12, 148, 21, 57
Offset: 2

Views

Author

T. D. Noe, Sep 10 2002

Keywords

Comments

All of the solutions can be printed by removing the comment symbols from the Mathematica program. For the solution (x,y,z) having the largest z value, see (A075249, A075250, A075251). See A073101 for the 4/n conjecture due to Erdős and Straus.

Examples

			a(4)=2 because there are two solutions: 5/4 = 1/1 + 1/5 + 1/20 and 5/4 = 1/1 + 1/6 + 1/12.
		

Crossrefs

Programs

  • Mathematica
    m = 5; For[lst = {}; n = 2, n <= 100, n++, cnt = 0; xr = n/m; If[IntegerQ[xr], xMin = xr + 1, xMin = Ceiling[xr]]; If[IntegerQ[3xr], xMax = 3xr - 1, xMax = Floor[3xr]]; For[x = xMin, x <= xMax, x++, yr = 1/(m/n - 1/x); If[IntegerQ[yr], yMin = yr + 1, yMin = Ceiling[yr]]; If[IntegerQ[2yr], yMax = 2yr + 1, yMax = Ceiling[2yr]]; For[y = yMin, y <= yMax, y++, zr = 1/(m/n - 1/x - 1/y); If[y > x && zr > y && IntegerQ[zr], z = zr; cnt++; (*Print[n, " ", x, " ", y, " ", z]*)]]]; AppendTo[lst, cnt]]; lst
    f[n_] := Length@ Solve[5/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 74] (* Robert G. Wilson v, Jul 17 2013 *)