cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075261 y-value of the solution (x,y,z) to 3/(2n+1) = 1/x + 1/y + 1/z satisfying 0 < x < y < z, odd x, y, z and having the largest z-value. The x and z components are in A075260 and A075262.

Original entry on oeis.org

5, 11, 9, 15, 33, 21, 17, 67, 33, 69, 113, 51, 87, 171, 77, 115, 241, 99, 155, 323, 129, 63, 417, 171, 265, 523, 201, 315, 641, 243, 375, 771, 299, 445, 913, 339, 525, 1067, 393, 609, 1233, 465, 297, 1411, 513, 785, 1601, 579, 885, 1803, 651, 999, 2017, 723
Offset: 2

Views

Author

T. D. Noe, Sep 10 2002

Keywords

Comments

See A075259 for more details.

Crossrefs

Programs

  • Mathematica
    m=3; For[xLst={}; yLst={}; zLst={}; n=5, n<=200, n=n+2, cnt=0; xr=n/m; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(m/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(m/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; If[OddQ[x y z], cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]]; y++ ]; x++ ]; If[cnt==0, AppendTo[xLst, 0]; AppendTo[yLst, 0]; AppendTo[zLst, 0]]]; yLst