A075261 y-value of the solution (x,y,z) to 3/(2n+1) = 1/x + 1/y + 1/z satisfying 0 < x < y < z, odd x, y, z and having the largest z-value. The x and z components are in A075260 and A075262.
5, 11, 9, 15, 33, 21, 17, 67, 33, 69, 113, 51, 87, 171, 77, 115, 241, 99, 155, 323, 129, 63, 417, 171, 265, 523, 201, 315, 641, 243, 375, 771, 299, 445, 913, 339, 525, 1067, 393, 609, 1233, 465, 297, 1411, 513, 785, 1601, 579, 885, 1803, 651, 999, 2017, 723
Offset: 2
Programs
-
Mathematica
m=3; For[xLst={}; yLst={}; zLst={}; n=5, n<=200, n=n+2, cnt=0; xr=n/m; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(m/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(m/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; If[OddQ[x y z], cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]]; y++ ]; x++ ]; If[cnt==0, AppendTo[xLst, 0]; AppendTo[yLst, 0]; AppendTo[zLst, 0]]]; yLst
Comments