A075264 Triangle of numerators of coefficients, where the n-th row forms the polynomial in z, P(n,z), that is the coefficient of x^n in {-log(1-x)/x}^z, for n > 0. The denominator for all the terms in the n-th row is A053657(n).
1, 5, 3, 6, 5, 1, 502, 485, 150, 15, 760, 802, 305, 50, 3, 152696, 171150, 73801, 15435, 1575, 63, 252336, 295748, 139020, 33817, 4515, 315, 9, 51360816, 62333204, 31231500, 8437975, 1334760, 124110, 6300, 135, 88864128, 110941776, 58415444
Offset: 1
Examples
P(1,z) = z/2, P(2,z) = (5z + 3z^2)/24, P(3,z) = (6z + 5z^2 + z^3)/48, P(4,z) = (502z + 485z^2 + 150z^3 + 15z^4)/5760, P(5,z) = (760z + 802z^2 + 305z^3 + 50z^4 +3z^5)/11520, P(6,z) = (152696z + 171150z^2 + 73801z^3 + 15435z^4 + 1575z^5 + 63z^6)/2903040, P(7,z) = (252336z + 295748z^2 + 139020z^3 + 33817z^4 + 4515z^5 + 315z^6 + 9z^7)/5806080, P(8,z) = (51360816z + 62333204z^2 + 31231500z^3 + 8437975z^4 + 1334760z^5 + 124110z^6 + 6300z^7 + 135z^8)/1393459200.
Programs
-
Maple
nmax:=8; A053657 := proc(n) local P, p, q, s, r; P := select(isprime, [$2..n]); r:=1; for p in P do s := 0; q := p-1; do if q > (n-1) then break fi; s := s + iquo(n-1, q); q := q*p; od; r := r * p^s; od; r end: f(z) := convert(series((-ln(1-x)/x)^z, x, nmax+2), polynom): for n from 1 to nmax do f(n) := A053657(n+1)*coeff(f(z), x, n) od: for n from 1 to nmax do for m from 1 to n do a(n, m) := coeff(f(n), z, m) od: od: seq(seq(a(n, m), m=1..n), n=1..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012
-
Mathematica
rows = 9; A053657[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}]; (Rest[CoefficientList[#, z]]& /@ Rest @ CoefficientList[(-Log[1-x]/x)^z + O[x]^(rows+1), x]) * Array[A053657, rows, 2] // Flatten (* Jean-François Alcover, Nov 22 2016 *)
-
PARI
{T(n,k)=local(X=x+x^2*O(x^n)); D=1;for(j=0,n,D=lcm(D,denominator( polcoeff(polcoeff((-log(1-X)/x)^z+z*O(z^j),j,z),n,x)))); return(D*polcoeff(polcoeff((-log(1-X)/x)^z+z*O(z^k),k,z),n,x))}
Formula
The n-th row polynomials, P(n, z), satisfy 1 + Sum_{n>=1} P(n, z) x^n = (Sum_{k>=1} x^(k-1)/k)^z.
Comments