cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A215602 a(n) = L(n)*L(n+1), where L = A000032 (Lucas numbers).

Original entry on oeis.org

2, 3, 12, 28, 77, 198, 522, 1363, 3572, 9348, 24477, 64078, 167762, 439203, 1149852, 3010348, 7881197, 20633238, 54018522, 141422323, 370248452, 969323028, 2537720637, 6643838878, 17393796002, 45537549123, 119218851372, 312119004988, 817138163597, 2139295485798, 5600748293802, 14662949395603, 38388099893012, 100501350283428
Offset: 0

Views

Author

N. J. A. Sloane, Aug 17 2012

Keywords

Crossrefs

Cf. A000032, A215580. A075269 is a signed version.

Programs

  • Mathematica
    Table[LucasL[n]*LucasL[n + 1], {n, 0, 33}] (* Amiram Eldar, Oct 06 2020 *)
  • PARI
    a(n) = round(((-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-5+sqrt(5))+(3+sqrt(5))^n*(5+sqrt(5))))/sqrt(5))) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec((2-x+2*x^2)/((1+x)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Oct 01 2016

Formula

G.f.: ( 2-x+2*x^2 ) / ( (1+x)*(x^2-3*x+1) ). - R. J. Mathar, Aug 21 2012
a(n) = A002878(n)+(-1)^n. - R. J. Mathar, Aug 21 2012
a(n) = F(n-1)*F(n) + F(n-1)*F(n+2) + F(n+1)*F(n) + F(n+1)*F(n+2), where F=A000045, F(-1)=1. - Bruno Berselli, Nov 03 2015
a(n) = F(2*n) + F(2*n+2) + (-1)^n with F(k)=A000045(k). - J. M. Bergot, Apr 15 2016
a(n) = ((-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-5+sqrt(5))+(3+sqrt(5))^n*(5+sqrt(5)))) / sqrt(5)). - Colin Barker, Oct 01 2016
Sum_{n>=0} (-1)^n/a(n) = sqrt(5)/10. - Amiram Eldar, Oct 06 2020

A215580 Partial sums of A215602.

Original entry on oeis.org

2, 5, 17, 45, 122, 320, 842, 2205, 5777, 15125, 39602, 103680, 271442, 710645, 1860497, 4870845, 12752042, 33385280, 87403802, 228826125, 599074577, 1568397605, 4106118242, 10749957120, 28143753122, 73681302245, 192900153617, 505019158605, 1322157322202, 3461452808000, 9062201101802, 23725150497405, 62113250390417, 162614600673845
Offset: 0

Views

Author

J. M. Bergot, Aug 16 2012

Keywords

Comments

Dividing the terms of this sequence by Fibonacci or Lucas numbers yields symmetric sets of remainders of determinable lengths. For F(n) beginning at n=3: (a) F(2n) will have a set of remainders of length 2n in which the sum of the remainders is 3*(F(2n)-n). Example for F(2*6)=144: the set of remainders is {2,5,17,45,122,32,122,45,17,5,2,0} with 2*6=12 terms and a sum of 3*(144-6)=414. (b) For F(2n+1) there will be 2*(2n+1) terms having a sum equal to (2n+1)*(F(2n+1)-3). Example for F(2*4+1)=34: the remainders are {2,5,7,11,20,14,26,29,31,29,26,14,20,11,17,5,2,0} with 2*9 terms and a sum of 9*(34-1)=279.
Using Lucas numbers starting at n=2: (a) L(2n) has 4n remainders with sum (2n+1)*(L(2n)-6*n). Example for n=4 giving L(2*4)=47, has remainders {2,5,17,45,28,38,43,43,43,38,28,45,17,5,2,0} with a sum of (8+1)*(47)-6*4=399. (B) For L(2n+1) the length of the period is 2*(2n+1) and the sum of the remainders is 4*L(2n+1)-3*(2n+1). Example for n=3 for L(2*3+1)=29 has remainders {2,5,17,16,6,1,11,6,16,17,5,2,0} with length 2*7 and sum of terms 4*29-3*7=95.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, 0, -3, 1}, {2, 5, 17, 45}, 35] (* Paolo Xausa, Feb 22 2024 *)

Formula

a(2n) = L(4*n)-2, a(2*n+1) = L(4*n+2)-1, where L() are the Lucas numbers A000032.
G.f. ( -2+x-2*x^2 ) / ( (x-1)*(1+x)*(x^2-3*x+1) ). - R. J. Mathar, Aug 21 2012
a(n) = A005248(n+1)-A000034(n). - R. J. Mathar, Aug 21 2012

Extensions

Edited by N. J. A. Sloane, Aug 17 2012
Showing 1-2 of 2 results.