A075317 Pair the odd numbers such that the k-th pair is (r, r+2k) where r is the smallest odd number not included earlier: (1,3),(5,9),(7,13),(11,19),(15,25),(17,29),(21,35),(23,39),(27,45),... This is the sequence of the first member of pairs.
1, 5, 7, 11, 15, 17, 21, 23, 27, 31, 33, 37, 41, 43, 47, 49, 53, 57, 59, 63, 65, 69, 73, 75, 79, 83, 85, 89, 91, 95, 99, 101, 105, 109, 111, 115, 117, 121, 125, 127, 131, 133, 137, 141, 143, 147, 151, 153, 157, 159, 163, 167, 169, 173, 175, 179, 183, 185, 189, 193
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Fibonacci representations, Fib. Quart. 10 (1972), 1-28.
Programs
-
Magma
[2*Floor(n*(1+Sqrt(5))/2)-1: n in [1..60]]; // Vincenzo Librandi, Sep 05 2016
-
Maple
A075317 := proc(nmax) local r,k,a,pairs ; a := [1] ; pairs := [1,3] ; k := 2 ; r := 5 ; while nops(a) < nmax do while r in pairs do r := r+2 ; od ; a := [op(a),r] ; if r+2*k in pairs then printf("inconsistency",k) ; fi ; pairs := [op(pairs),r,r+2*k] ; k := k+1 ; od ; RETURN(a) ; end: a := A075317(200) ; for n from 1 to nops(a) do printf("%d,",op(n,a)) ; od ; # R. J. Mathar, Nov 12 2006
-
Mathematica
Table[2 Floor[n (1 + Sqrt[5]) / 2] - 1, {n, 80}] (* Vincenzo Librandi, Sep 05 2016 *)
-
Python
from math import isqrt def A075317(n): return (n+isqrt(5*n**2)&-2)-1 # Chai Wah Wu, Aug 16 2022
Formula
a(n) = 2*floor(n*phi)-1, where phi=(1+sqrt(5))/2. - Michel Dekking, Sep 05 2016
Extensions
More terms from R. J. Mathar, Nov 12 2006
Comments