A075321 Pair the odd primes so that the n-th pair is (p, p+2n) where p is the smallest prime not included earlier such that p and p+2n are primes and p+2n also does not occur earlier: (3, 5), (7, 11), (13, 19), (23, 31), (37, 47), (17, 29), (53, 67) ... This is the sequence of the first member of every pair.
3, 7, 13, 23, 37, 17, 53, 43, 61, 83, 109, 73, 101, 139, 41, 149, 157, 137, 113, 193, 197, 179, 211, 229, 263, 199, 227, 107, 331, 293, 311, 283, 241, 269, 349, 359, 383, 367, 401, 317, 379, 439, 491, 421, 409, 449, 463, 467
Offset: 1
Keywords
Examples
a(4)=23: For the 4th pair though 17 is the smallest prime not occurring earlier, 17+8 = 25 is not a prime and 23 + 8 = 31 is a prime.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a075321 = a075323 . subtract 1 . (* 2) -- Reinhard Zumkeller, Nov 29 2014
-
Maple
A075321p := proc(n) option remember; local prevlist,i,p,q ; if n = 1 then return [3,5]; else prevlist := [seq(op(procname(i)),i=1..n-1)] ; for i from 2 do p := ithprime(i) ; if not p in prevlist then q := p+2*n ; if isprime(q) and not q in prevlist then return [p,q] ; end if; end if; end do: end if; end proc: A075321 := proc(n) op(1,A075321p(n)) ; end proc: seq(A075321(n),n=1..60) ; # R. J. Mathar, Nov 26 2014
-
Mathematica
A075321p[n_] := A075321p[n] = Module[{prevlist, i, p, q }, If[n == 1, Return[{3, 5}], prevlist = Array[A075321p, n-1] // Flatten]; For[i = 2, True, i++, p = Prime[i]; If[FreeQ[prevlist, p], q = p + 2*n ; If[ PrimeQ[q] && FreeQ[ prevlist, q], Return[{p, q}]]]]]; A075321 [n_] := A075321p[n][[1]]; Array[A075321, 50] (* Jean-François Alcover, Feb 12 2018, translated from R. J. Mathar's program *)
Extensions
Corrected by R. J. Mathar, Nov 26 2014
Comments