A075322 Pair the odd primes so that the k-th pair is (p, p+2n) where p is the smallest prime not included earlier such that p and p+2n are primes and p+2n also does not occur earlier: (3, 5), (7, 11), (13, 19), (23, 31), (37, 47), (17, 29), ... This is the sequence of the second member of every pair.
5, 11, 19, 31, 47, 29, 67, 59, 79, 103, 131, 97, 127, 167, 71, 181, 191, 173, 151, 233, 239, 223, 257, 277, 313, 251, 281, 163, 389, 353, 373, 347, 307, 337, 419, 431, 457, 443, 479, 397, 461, 523, 577, 509, 499, 541, 557, 563
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a075322 = a075323 . (* 2) -- Reinhard Zumkeller, Nov 29 2014
-
Maple
# A075321p() implemented in A075321. A075322 := proc(n) op(2,A075321p(n)) ; end proc: seq(A075322(n),n=1..60) ; # R. J. Mathar, Nov 26 2014
-
Mathematica
A075321p[n_] := A075321p[n] = Module[{prevlist, i, p, q }, If[n == 1, Return[{3, 5}], prevlist = Array[A075321p, n - 1] // Flatten]; For[i = 2, True, i++, p = Prime[i]; If[FreeQ[prevlist, p], q = p + 2*n; If[PrimeQ[q] && FreeQ[ prevlist, q], Return[{p, q}]]]]]; a[n_] := A075321p[n][[2]]; Array[a, 50] (* Jean-François Alcover, Feb 12 2018, after R. J. Mathar *)
Extensions
Corrected by R. J. Mathar, Nov 26 2014
Comments