cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A075329 Pair up the natural numbers as (r, s) (say) so that all natural numbers are obtained only once as r, s, s+r or s-r: (1, 3), (5, 11), (7, 15), (9, 19), (12, 25), (14, 31), (18, 38), ... Sequence gives first member of each pair.

Original entry on oeis.org

1, 5, 7, 9, 12, 14, 18, 21, 24, 27, 29, 33, 35, 39, 41, 43, 47, 49, 51, 54, 58, 60, 63, 66, 69, 72, 75, 77, 78, 82, 86, 88, 92, 94, 96, 99, 103, 105, 110, 112, 114, 116, 120, 123, 126, 129, 130, 135, 137, 140, 143, 146, 148, 152, 154, 158, 160, 164, 166, 169, 171, 172
Offset: 1

Views

Author

Amarnath Murthy, Sep 18 2002

Keywords

Crossrefs

Programs

  • Maple
    A075329 := proc(nmax) local r,s,n,stst,rtst ; r := [1] : s := [] : n := {1} : while nops(r) < 100 do stst := 1 ; while stst in n or stst-op(-1,r) in n or stst+op(-1,r) in n do stst := stst +1 ; od ; s := [op(s),stst] ; n := n union {stst, stst-op(-1,r), stst+op(-1,r)} ; rtst := 1 ; while rtst in n do rtst := rtst +1 ; od ; r := [op(r),rtst] ; n := n union {rtst} ; od : RETURN(r) ; end: A075329(100) ; # R. J. Mathar, Feb 03 2007
  • Mathematica
    A075329[nmax_] := Module[{r = {1}, s = {}, n = {1}, stst, rtst}, While[Length[r] < nmax, stst = 1; While[MemberQ[n, stst] || MemberQ[n, stst - Last[r]] || MemberQ[n, stst + Last[r]], stst++]; s = Append[s, stst]; n = n ~Union~ {stst, stst - Last[r], stst + Last[r]}; rtst = 1; While[MemberQ[n, rtst], rtst++]; r = Append[r, rtst]; n = n ~Union~ {rtst}]; Return[r]];
    A075329[100] (* Jean-François Alcover, Jun 06 2024, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, Feb 03 2007

A075330 Second members of pairs in A075329.

Original entry on oeis.org

3, 11, 15, 19, 25, 31, 38, 44, 50, 57, 61, 67, 71, 79, 83, 89, 95, 101, 104, 109, 117, 122, 127, 134, 139, 145, 151, 157, 159, 167, 173, 179, 185, 191, 194, 201, 210, 213, 221, 225, 229, 235, 241, 248, 254, 260, 263, 271, 275, 281, 287, 293, 297, 305, 310, 319
Offset: 1

Views

Author

Amarnath Murthy, Sep 18 2002

Keywords

Crossrefs

Programs

  • Maple
    A075330 := proc(nmax) local r,s,n,stst,rtst ; r := [1] : s := [] : n := {1} : while nops(r) < nmax do stst := 1 ; while stst in n or stst-op(-1,r) in n or stst+op(-1,r) in n do stst := stst +1 ; od ; s := [op(s),stst] ; n := n union {stst, stst-op(-1,r), stst+op(-1,r)} ; rtst := 1 ; while rtst in n do rtst := rtst +1 ; od ; r := [op(r),rtst] ; n := n union {rtst} ; od : RETURN(s) ; end: A075330(100) ; # R. J. Mathar, Feb 03 2007
  • Mathematica
    A075330[nmax_] := Module[{r = {1}, s = {}, n = {1}, stst, rtst}, While[Length[r] < nmax, stst = 1; While[MemberQ[n, stst] || MemberQ[n, stst - Last[r]] || MemberQ[n, stst + Last[r]], stst++]; s = Append[s, stst]; n = n ~Union~ {stst, stst - Last[r], stst + Last[r]}; rtst = 1; While[MemberQ[n, rtst], rtst++]; r = Append[r, rtst]; n = n ~Union~ {rtst}]; Return[s]];
    A075330[100] (* Jean-François Alcover, Jun 06 2024, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, Feb 03 2007

A075332 Differences of pairs in A075329.

Original entry on oeis.org

2, 6, 8, 10, 13, 17, 20, 23, 26, 30, 32, 34, 36, 40, 42, 46, 48, 52, 53, 55, 59, 62, 64, 68, 70, 73, 76, 80, 81, 85, 87, 91, 93, 97, 98, 102, 107, 108, 111, 113, 115, 119, 121, 125, 128, 131, 133, 136, 138, 141, 144, 147, 149, 153, 156, 161, 162, 165, 168, 170, 174
Offset: 1

Views

Author

Amarnath Murthy, Sep 18 2002

Keywords

Crossrefs

Programs

  • Maple
    A075332 := proc(nmax) local r,s,n,stst,rtst,i ; r := [1] : s := [] : n := {1} : while nops(r) < nmax do stst := 1 ; while stst in n or stst-op(-1,r) in n or stst+op(-1,r) in n do stst := stst +1 ; od ; s := [op(s),stst] ; n := n union {stst, stst-op(-1,r), stst+op(-1,r)} ; rtst := 1 ; while rtst in n do rtst := rtst +1 ; od ; r := [op(r),rtst] ; n := n union {rtst} ; od : for i from 1 to nops(s) do s := subsop(i=op(i,s)-op(i,r),s) ; od ; RETURN(s) ; end: A075332(100) ; # R. J. Mathar, Feb 03 2007
  • Mathematica
    A075332[nmax_] := Module[{r = {1}, s = {}, n = {1}, stst, rtst}, While[Length[r] < nmax, stst = 1; While[MemberQ[n, stst] || MemberQ[n, stst - Last[r]] || MemberQ[n, stst + Last[r]], stst++]; s = Append[s, stst]; n = n~Union~{stst, stst - Last[r], stst + Last[r]}; rtst = 1; While[MemberQ[n, rtst], rtst++]; r = Append[r, rtst]; n = n~Union~{rtst}]; Return[s - Most[r]]];
    A075332[100] (* Jean-François Alcover, Jul 08 2024, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, Feb 03 2007

A099562 Sum C(n-4k,k-1), k=0..floor(n/5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 3, 4, 5, 6, 7, 11, 15, 20, 26, 33, 45, 60, 80, 106, 139, 185, 245, 325, 431, 570, 756, 1001, 1326, 1757, 2327, 3084, 4085, 5411, 7168, 9495, 12580, 16665, 22076, 29244, 38739, 51320, 67985, 90061, 119305, 158044, 209365
Offset: 0

Views

Author

Paul Barry, Oct 22 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-4k,k-1],{k,0,Floor[n/5]}],{n,0,60}] (* or *) LinearRecurrence[{1,0,0,0,2,-1,0,0,0,-1},{0,0,0,0,0,1,1,1,1,1},60] (* Harvey P. Dale, Jul 14 2015 *)

Formula

G.f.: x^5/((1-x^5)(1-x-x^5)); a(n)=a(n-1)+2a(n-5)-a(n-6)-a(n-10).
Showing 1-4 of 4 results.