A075436 Right- or upward-moving paths connecting opposite corners of an n X n chessboard, visiting the diagonal in 0 up to (n-2) intermediate points between start and finish. Equivalently, subdivide the chessboard into 1 up to (n-1) blocks along the diagonal in all possible ways and sum the path-count over all sub-blocks.
2, 10, 52, 274, 1452, 7716, 41064, 218722, 1165564, 6213100, 33125336, 176629268, 941884088, 5022886536, 26786945232, 142857244674, 761881733148, 4063282813596, 21670523246712, 115574945807004, 616395334890408, 3287425475237496, 17532874879557552
Offset: 2
Examples
a(3) = 10 because 0 intermediate points produces 6 paths on a 3 X 3 board and 1 intermediate points produces 4 paths: 1 . 1 1 . 2 . 2 . . 2 . 4 or 6 + 4 = 10 paths in total.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..200
- Cyril Banderier, Markus Kuba, and Michael Wallner, Analytic Combinatorics of Composition schemes and phase transitions with mixed Poisson distributions, arXiv:2103.03751 [math.PR], 2021.
Programs
-
Mathematica
Rest[CoefficientList[Series[(1-Sqrt[1-4*x]-8*x)/(-3+16*x), {x, 0, 24}], x]] (* corrected by Vaclav Kotesovec, Oct 28 2012 *) or combinatorially: Plus@@@Table[Table[Plus@@Apply[Times, Compositions[n-1-k, k]+1 /. i_Integer->Binomial[2i, i], {1}], {k, 1, n-1}], {n, 2, 12}] Flatten[{2,Table[2^(4*n-7)/3^(n-2)*(1-Sum[Binomial[2*k-1,k]*3^(k-2)/((2*k-1)*2^(4*k-4)),{k,2,n-1}] ),{n,3,20}]}] (* Vaclav Kotesovec, Oct 28 2012 *)
-
PARI
my(x='x+O('x^66)); Vec(x*(1-sqrt(1-4*x)-8*x)/(-3+16*x)) \\ Joerg Arndt, May 07 2013
Formula
G.f.: x*(1-sqrt(1-4*x)-8*x)/(-3+16*x).
Recurrence (for n>3): 3*(n-1)*a(n) = 2*(14*n-23)*a(n-1)-32*(2*n-5)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 2^(4*n-4)/3^n. - Vaclav Kotesovec, Oct 13 2012
a(n) = 2^(4*n-7)/3^(n-2) * (1 - Sum_{k=2..n-1} C(2*k-1,k)*3^(k-2)/((2*k-1) * 2^(4*k-4)) ), for n>2. - Vaclav Kotesovec, Oct 28 2012
G.f.: 2/(Q(0)-4*x), where Q(k) = 2*x + (k+1)/(2*k+1) - 2*x*(k+1)/(2*k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
Comments