cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075436 Right- or upward-moving paths connecting opposite corners of an n X n chessboard, visiting the diagonal in 0 up to (n-2) intermediate points between start and finish. Equivalently, subdivide the chessboard into 1 up to (n-1) blocks along the diagonal in all possible ways and sum the path-count over all sub-blocks.

Original entry on oeis.org

2, 10, 52, 274, 1452, 7716, 41064, 218722, 1165564, 6213100, 33125336, 176629268, 941884088, 5022886536, 26786945232, 142857244674, 761881733148, 4063282813596, 21670523246712, 115574945807004, 616395334890408, 3287425475237496, 17532874879557552
Offset: 2

Views

Author

Wouter Meeussen, Sep 15 2002

Keywords

Comments

Invert transform gives the central binomial coefficients A000984.
If it is required that the paths stay at the same side of the diagonal between intermediate points, then the count of intermediate points becomes an exact count of crossings and one gets the central binomial coefficients A000984.
Row sums of A075435.

Examples

			a(3) = 10 because 0 intermediate points produces 6 paths on a 3 X 3 board and 1 intermediate points produces 4 paths:
1 . 1
1 . 2 . 2
. . 2 . 4
or 6 + 4 = 10 paths in total.
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1-Sqrt[1-4*x]-8*x)/(-3+16*x), {x, 0, 24}], x]]  (* corrected by Vaclav Kotesovec, Oct 28 2012 *)  or combinatorially: Plus@@@Table[Table[Plus@@Apply[Times, Compositions[n-1-k, k]+1 /. i_Integer->Binomial[2i, i], {1}], {k, 1, n-1}], {n, 2, 12}]
    Flatten[{2,Table[2^(4*n-7)/3^(n-2)*(1-Sum[Binomial[2*k-1,k]*3^(k-2)/((2*k-1)*2^(4*k-4)),{k,2,n-1}] ),{n,3,20}]}] (* Vaclav Kotesovec, Oct 28 2012 *)
  • PARI
    my(x='x+O('x^66)); Vec(x*(1-sqrt(1-4*x)-8*x)/(-3+16*x)) \\ Joerg Arndt, May 07 2013

Formula

G.f.: x*(1-sqrt(1-4*x)-8*x)/(-3+16*x).
Recurrence (for n>3): 3*(n-1)*a(n) = 2*(14*n-23)*a(n-1)-32*(2*n-5)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 2^(4*n-4)/3^n. - Vaclav Kotesovec, Oct 13 2012
a(n) = 2^(4*n-7)/3^(n-2) * (1 - Sum_{k=2..n-1} C(2*k-1,k)*3^(k-2)/((2*k-1) * 2^(4*k-4)) ), for n>2. - Vaclav Kotesovec, Oct 28 2012
G.f.: 2/(Q(0)-4*x), where Q(k) = 2*x + (k+1)/(2*k+1) - 2*x*(k+1)/(2*k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013