cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A075435 T(n,k) = right- or upward-moving paths connecting opposite corners of an n X n chessboard, visiting the diagonal at k points between start and finish.

Original entry on oeis.org

2, 6, 4, 20, 24, 8, 70, 116, 72, 16, 252, 520, 456, 192, 32, 924, 2248, 2496, 1504, 480, 64, 3432, 9520, 12624, 9728, 4480, 1152, 128, 12870, 39796, 60792, 56400, 33440, 12480, 2688, 256, 48620, 164904, 283208, 304704, 218720, 105600, 33152, 6144
Offset: 2

Views

Author

Wouter Meeussen, Sep 15 2002

Keywords

Comments

If it is required that the paths stay at the same side of the diagonal between intermediate points, then the count of intermediate points becomes an exact count of crossings and one gets table A039598.
T is the convolution triangle of the central binomial coefficients. - Peter Luschny, Oct 19 2022

Examples

			{2},
{6, 4},
{20, 24, 8},
{70, 116, 72, 16},
{252, 520, 456, 192, 32},
...
		

Crossrefs

Row sums give A075436.

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> binomial(2*n, n)); # Peter Luschny, Oct 19 2022
  • Mathematica
    Table[Table[Plus@@Apply[Times, Compositions[n-1-k, k]+1 /. i_Integer->Binomial[2i, i], {1}], {k, 1, n-1}], {n, 2, 12}]
  • Maxima
    T(n,m):=sum(k/n*binomial(2*n-k-1,n-1)*2^k*binomial(k-1,m-1),k,m,n); /* Vladimir Kruchinin, Mar 30 2011 */
    
  • Sage
    @cached_function
    def T(k,n):
        if k==n: return 2^n
        if k==0: return 0
        return sum(binomial(2*i,i)*T(k-1,n-i) for i in (1..n-k+1))
    A075435 = lambda n,k: T(k,n)
    for n in (1..9): print([A075435(n,k) for k in (1..n)]) # Peter Luschny, Mar 12 2016

Formula

G.f.: [2*x*c(x)/(1-x*c(x))]^m=sum(n>=m T(n,m)*x^n) where c(x) is the g.f. of A000108, also T(n,m)=sum(k=m..n, k/n*binomial(2*n-k-1,n-1)*2^k*binomial(k-1,m-1)), n>=m>0. [Vladimir Kruchinin, Mar 30 2011]

A328004 Expansion of e.g.f. 1 / (1 - Sum_{k>=1} binomial(2*k,k) * x^k / k!).

Original entry on oeis.org

1, 2, 14, 140, 1854, 30692, 609812, 14135816, 374486782, 11161030388, 369597971484, 13463177200376, 535000400076660, 23031528320070584, 1067766010124118200, 53038672987708575920, 2810204538580052967422, 158202066016882053997204, 9429962256806049820343564
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 01 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(2 - Exp[2 x] BesselI[0, 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[2 k, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(2 - exp(2*x) * (besseli(0,2*x))))) \\ Michel Marcus, Oct 02 2019

Formula

E.g.f.: 1 / (2 - exp(2*x) * BesselI(0,2*x)).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A000984(k) * a(n-k).
a(n) ~ n! / ((4 + 2*exp(2*r)*BesselI(1, 2*r)) * r^(n+1)), where r = 0.30197758068953447339121214393882523964817455046976015309132... is the root of the equation exp(2*r) * BesselI(0, 2*r) = 2. - Vaclav Kotesovec, Oct 02 2019

A305561 Expansion of 2*x*(1 - 2*x)/(1 + 2*x - 8*x^2 - sqrt(1 - 4*x^2)).

Original entry on oeis.org

1, 1, 3, 8, 23, 64, 182, 512, 1451, 4096, 11594, 32768, 92710, 262144, 741548, 2097152, 5931955, 16777216, 47454210, 134217728, 379628818, 1073741824, 3037013748, 8589934592, 24296051198, 68719476736, 194368201572, 549755813888, 1554944869676, 4398046511104
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 21 2018

Keywords

Comments

Invert transform of A001405.

Crossrefs

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 2*x*(1 - 2*x)/(1 + 2*x - 8*x^2 - Sqrt(1 - 4*x^2)))); // Vincenzo Librandi, Jan 27 2020
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-i)*binomial(i, floor(i/2)), i=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    nmax = 29; CoefficientList[Series[2 x (1 - 2 x)/(1 + 2 x - 8 x^2 - Sqrt[1 - 4 x^2]), {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[1/(1 - Sum[Binomial[k, Floor[k/2]] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[k, Floor[k/2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 29}]

Formula

G.f.: 1/(1 - Sum_{k>=1} binomial(k,floor(k/2))*x^k).
D-finite with recurrence: n*(n+1)*a(n) +(n-1)*(n-5)*a(n-1) -12*(n-1)*(n+1)*a(n-2) -12*(n-2)*(n-5)*a(n-3) +32*(n+1)*(n-3)*a(n-4) +32*(n-4)*(n-5)*a(n-5)=0. - R. J. Mathar, Jan 25 2020
a(n) ~ 2^(3*(n-1)/2). - Vaclav Kotesovec, Jan 29 2020

A370375 Number of compositions of n where there are A005809(k) sorts of part k.

Original entry on oeis.org

1, 3, 24, 201, 1710, 14649, 125934, 1084716, 9353574, 80711625, 696756420, 6016526145, 51962422464, 448833782556, 3877191573720, 33494487646632, 289365173239302, 2499947731531305, 21598513018825920, 186604716462810075, 1612224571249844910
Offset: 0

Views

Author

Seiichi Manyama, Feb 16 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-sum(k=1, N, binomial(3*k, k)*x^k)))

Formula

G.f.: 1 / (1 - Sum_{k>=1} binomial(3*k,k) * x^k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(3*k,k) * a(n-k).

A373816 Expansion of 1/(2 - 1/(1 - 4*x)^(3/2)).

Original entry on oeis.org

1, 6, 66, 716, 7746, 83748, 905332, 9786456, 105788610, 1143539764, 12361276668, 133621178280, 1444399211188, 15613460929512, 168776165962152, 1824412555458480, 19721274932411586, 213180228200294100, 2304405260270678316, 24909831687105112968
Offset: 0

Views

Author

Seiichi Manyama, Aug 04 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(2-1/(1-4*x)^(3/2)))

Formula

a(n) = 4^n * Sum_{k>=0} (1/2)^(k+1) * binomial(n-1+3*k/2,n).
Showing 1-5 of 5 results.