cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075460 Odd primitive numbers such that n! divided by product of factorials of all proper divisors of n is not an integer.

Original entry on oeis.org

1575, 2835, 3465, 4095, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 8085, 9135, 9765, 11655, 12705, 12915, 13545, 14805, 15015, 15435, 16695, 18585, 19215, 19635, 21105, 21945, 22275, 22365, 22995, 23205, 24885, 25245, 25935, 26145, 26565
Offset: 1

Views

Author

Robert G. Wilson v, Sep 16 2002

Keywords

Comments

If a number is in the sequence, then all of its multiples would also meet the criterion, but are not included. This is meant by the word "primitive" in the definition.

Examples

			1575 = 3^2*5^2*7 is in the sequence, because the product of the factorials of its proper divisors { 1, 3, 5, 7, 9, 15, 21, 25, 35, 45, 63, 75, 105, 175, 225, 315, 525 } does not divide 1575!. (For example, the former's 2-adic valuation equals 1588 while the latter's 2-adic valuation equals only 1569.) This is the smallest odd number with this property. - _M. F. Hasler_, Dec 30 2016
		

Crossrefs

Cf. A075071. The first primitive n's with this property (most of which are even) are in A075422.

Programs

  • Mathematica
    f[n_] := n!/Apply[Times, Drop[Divisors[n], -1]! ]; a = {}; Do[b = f[n]; If[ !IntegerQ[b], If[ Select[n/a, IntegerQ] == {}, Print[n]; a = Append[a, n]]], {n, 1, 28213, 2}]; a

Extensions

Edited by M. F. Hasler, Dec 30 2016