A075460 Odd primitive numbers such that n! divided by product of factorials of all proper divisors of n is not an integer.
1575, 2835, 3465, 4095, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 8085, 9135, 9765, 11655, 12705, 12915, 13545, 14805, 15015, 15435, 16695, 18585, 19215, 19635, 21105, 21945, 22275, 22365, 22995, 23205, 24885, 25245, 25935, 26145, 26565
Offset: 1
Examples
1575 = 3^2*5^2*7 is in the sequence, because the product of the factorials of its proper divisors { 1, 3, 5, 7, 9, 15, 21, 25, 35, 45, 63, 75, 105, 175, 225, 315, 525 } does not divide 1575!. (For example, the former's 2-adic valuation equals 1588 while the latter's 2-adic valuation equals only 1569.) This is the smallest odd number with this property. - _M. F. Hasler_, Dec 30 2016
Crossrefs
Programs
-
Mathematica
f[n_] := n!/Apply[Times, Drop[Divisors[n], -1]! ]; a = {}; Do[b = f[n]; If[ !IntegerQ[b], If[ Select[n/a, IntegerQ] == {}, Print[n]; a = Append[a, n]]], {n, 1, 28213, 2}]; a
Extensions
Edited by M. F. Hasler, Dec 30 2016
Comments