A075422
Primitive numbers n such that the product of factorials of all proper divisors of n does not divide n!.
Original entry on oeis.org
24, 30, 36, 40, 54, 84, 100, 102, 112, 126, 132, 140, 156, 176, 198, 208, 220, 228, 234, 260, 272, 276, 294, 308, 340, 342, 348, 350, 364, 372, 380, 392, 414, 444, 460, 462, 476, 490, 492, 516, 522, 532, 546, 558, 564, 572, 580, 608, 620, 636, 644, 666, 708
Offset: 1
The product of the factorials of the proper divisors of 24, 1! * 2! * 3! * 4! * 6! * 8! * 12!, is divisible by 2^26 and therefore does not divide 24! (which is divisible by 2^22 only). 24 is the smallest number with this property. - _M. F. Hasler_, Dec 31 2016
See
A248693 for the list of all (also non-primitive) terms (and PARI code).
-
f[n_] := n!/Apply[Times, Drop[Divisors[n], -1]! ]; a = {}; Do[b = f[n]; If[ !IntegerQ[b], If[ Select[n/a, IntegerQ] == {}, a = Append[a, n]]], {n, 1, 725}]; a
A248693
Numbers k such that the product of factorials of proper divisors of k does not divide k!.
Original entry on oeis.org
24, 30, 36, 40, 48, 54, 60, 72, 80, 84, 90, 96, 100, 102, 108, 112, 120, 126, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252, 260, 264, 270, 272, 276, 280, 288, 294, 300, 306, 308, 312, 320
Offset: 1
Let Q(n) = n!/(product of the proper divisors of n). Then Q(n) an integer for n = 1..23, as indicated by the following list of Q(n) for n = 1..24: 1, 2, 6, 12, 120, 60, 5040, 840, 60480, 15120, 39916800, 2310, 6227020800, 8648640, 1816214400, 10810800, 355687428096000, 2042040, 121645100408832000, 116396280, 1689515283456000, 14079294028800, 25852016738884976640000, 7436429/48.
-
d[n_] := Drop[Divisors[n], -1]!; p[n_] := Apply[Times, d[n]]
u = Select[Range[25000], ! IntegerQ[#!/p[#]] &]; (* A248693 *)
Select[u, OddQ[#] &] (* A248694 *)
(* Second program *)
Select[Range@ 320, ! Divisible[#!, Times @@ Map[Factorial, Most@ Divisors@ #]] &] (* Michael De Vlieger, Dec 31 2016 *)
-
is(n)=prod(i=2,n-1,i,Mod(n,prod(j=2,-1+#n=divisors(n),n[j]!))) \\ Returns nonzero (actually, Mod(n!,P) where P = product_{d|n, dM. F. Hasler, Dec 30 2016
Showing 1-2 of 2 results.
Comments