cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075498 Stirling2 triangle with scaled diagonals (powers of 3).

Original entry on oeis.org

1, 3, 1, 9, 9, 1, 27, 63, 18, 1, 81, 405, 225, 30, 1, 243, 2511, 2430, 585, 45, 1, 729, 15309, 24381, 9450, 1260, 63, 1, 2187, 92583, 234738, 137781, 28350, 2394, 84, 1, 6561, 557685, 2205225, 1888110, 563031, 71442, 4158, 108, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the D. E. Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(3*z) - 1)*x/3) - 1.
Subtriangle of the triangle given by (0, 3, 0, 6, 0, 9, 0, 12, 0, 15, 0, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938, see example. - Philippe Deléham, Feb 13 2013
Also the Bell transform of A000244. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

Examples

			[1]; [3,1]; [9,9,1]; ...; p(3,x) = x*(9 + 9*x + x^2).
From _Philippe Deléham_, Feb 13 2013: (Start)
Triangle (0, 3, 0, 6, 0, 9, 0, 12, 0, 15, 0, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
  1;
  0,   1;
  0,   3,   1;
  0,   9,   9,   1;
  0,  27,  63,  18,   1;
  0,  81, 405, 225,  30,   1;
(End)
		

Crossrefs

Columns 1-7 are A000244, A016137, A017933, A028085, A075515, A075516, A075906. Row sums are A004212.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ..) as column 0.
    BellMatrix(n -> 3^n, 9); # Peter Luschny, Jan 26 2016
  • Mathematica
    Flatten[Table[3^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
    rows = 9;
    t = Table[3^n, {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(3^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (3^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*3)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 3*m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-3*k*x), m >= 1.
E.g.f. for m-th column: (((exp(3*x)-1)/3)^m)/m!, m >= 1.
From Peter Bala, Jan 13 2018: (Start)
Dobinski-type formulas for row polynomials R(n,x):
R(n,x) = exp(-x/3)*Sum_{i >= 0} (3*i)^n* (x/3)^i/i!;
R(n+1,x) = x*exp(-x/3)*Sum_{i >= 0} (3 + 3*i)^n* (x/3)^i/i!.
R(n+1,x) = x*Sum_{k = 0..n} binomial(n,k)*3^(n-k)*R(k,x).(End)