A075499 Stirling2 triangle with scaled diagonals (powers of 4).
1, 4, 1, 16, 12, 1, 64, 112, 24, 1, 256, 960, 400, 40, 1, 1024, 7936, 5760, 1040, 60, 1, 4096, 64512, 77056, 22400, 2240, 84, 1, 16384, 520192, 989184, 435456, 67200, 4256, 112, 1, 65536, 4177920, 12390400, 7956480, 1779456, 169344, 7392, 144, 1
Offset: 1
Examples
[1]; [4,1]; [16,12,1]; ...; p(3,x) = x(16 + 12*x + x^2). From _Andrew Howroyd_, Mar 25 2017: (Start) Triangle starts * 1 * 4 1 * 16 12 1 * 64 112 24 1 * 256 960 400 40 1 * 1024 7936 5760 1040 60 1 * 4096 64512 77056 22400 2240 84 1 * 16384 520192 989184 435456 67200 4256 112 1 (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
Table[(4^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
-
PARI
for(n=1, 11, for(m=1, n, print1(4^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
-
Sage
# uses[inverse_bell_transform from A265605] # Adds a column 1,0,0,... at the left side of the triangle. multifact_4_4 = lambda n: prod(4*k + 4 for k in (0..n-1)) inverse_bell_matrix(multifact_4_4, 9) # Peter Luschny, Dec 31 2015
Formula
a(n, m) = (4^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*4)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 4m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-4k*x), m >= 1.
E.g.f. for m-th column: (((exp(4x)-1)/4)^m)/m!, m >= 1.
Comments