Original entry on oeis.org
1, 40, 1040, 22400, 435456, 7956480, 139694080, 2387968000, 40075329536, 663887544320, 10896534405120, 177653730508800, 2882307270639616, 46596186764738560, 751299029274460160, 12089975328525516800
Offset: 0
-
Table[(-4^n+24*8^n-81*12^n+64*16^n)/6,{n,0,20}] (* or *) LinearRecurrence[ {40,-560,3200,-6144},{1,40,1040,22400},20] (* Harvey P. Dale, Jun 04 2013 *)
Original entry on oeis.org
1, 60, 2240, 67200, 1779456, 43545600, 1010606080, 22600089600, 492077121536, 10505429975040, 221005133905920, 4597756408627200, 94837435443183616, 1943344895628410880, 39618196941842677760
Offset: 0
A075910
Seventh column of triangle A075499.
Original entry on oeis.org
1, 112, 7392, 376320, 16380672, 642453504, 23410376704, 808210923520, 26787271999488, 860325833342976, 26956901684084736, 828217683974553600, 25047119070415028224, 747831252926309859328, 22095179333791056396288
Offset: 0
-
CoefficientList[Series[1/Product[1-4k x,{k,7}],{x,0,20}],x] (* Harvey P. Dale, Aug 11 2021 *)
Original entry on oeis.org
1, 84, 4256, 169344, 5843712, 183794688, 5421678592, 152720375808, 4157366140928, 110282217357312, 2867778350481408, 73424436820180992, 1857023919127527424, 46511918954689069056, 1155904251854380335104
Offset: 0
A099394
Triangle T(k,n) by rows: n! * A075499(k,n).
Original entry on oeis.org
1, 4, 1, 16, 12, 2, 64, 112, 48, 6, 256, 960, 800, 240, 24, 1024, 7936, 11520, 6240, 1440, 120, 4096, 64512, 154112, 134400, 53760, 10080, 720, 16384, 520192, 1978368, 2612736, 1612800, 510720, 80640, 5040, 65536, 4177920, 24780800
Offset: 0
Triangle begins:
1;
4, 1;
16, 12, 2;
64, 112, 48, 6;
256, 960, 800, 240, 24;
1024, 7936, 11520, 6240, 1440, 120;
A004213
Shifts one place left under 4th-order binomial transform.
Original entry on oeis.org
1, 1, 5, 29, 201, 1657, 15821, 170389, 2032785, 26546673, 376085653, 5736591885, 93614616409, 1625661357673, 29905322979421, 580513190237573, 11850869542405409, 253669139947767777, 5678266212792053029, 132607996474971041789, 3224106929536557918697
Offset: 0
Restricted growth strings: a(0)=1 corresponds to the empty string, a(1)=1 to [0],
a(2)=3 to [00], [01], [02], [03], and [04], a(3) = 29 to
RGS F
.1: [ 0 0 0 ] [ 0 0 0 ]
.2: [ 0 0 1 ] [ 0 0 0 ]
.3: [ 0 0 2 ] [ 0 0 0 ]
.4: [ 0 0 3 ] [ 0 0 0 ]
.5: [ 0 0 4 ] [ 0 0 4 ]
.6: [ 0 1 0 ] [ 0 0 0 ]
.7: [ 0 1 1 ] [ 0 0 0 ]
.8: [ 0 1 2 ] [ 0 0 0 ]
.9: [ 0 1 3 ] [ 0 0 0 ]
10: [ 0 1 4 ] [ 0 0 4 ]
11: [ 0 2 0 ] [ 0 0 0 ]
12: [ 0 2 1 ] [ 0 0 0 ]
13: [ 0 2 2 ] [ 0 0 0 ]
14: [ 0 2 3 ] [ 0 0 0 ]
15: [ 0 2 4 ] [ 0 0 4 ]
16: [ 0 3 0 ] [ 0 0 0 ]
17: [ 0 3 1 ] [ 0 0 0 ]
18: [ 0 3 2 ] [ 0 0 0 ]
19: [ 0 3 3 ] [ 0 0 0 ]
20: [ 0 3 4 ] [ 0 0 4 ]
21: [ 0 4 0 ] [ 0 4 4 ]
22: [ 0 4 1 ] [ 0 4 4 ]
23: [ 0 4 2 ] [ 0 4 4 ]
24: [ 0 4 3 ] [ 0 4 4 ]
25: [ 0 4 4 ] [ 0 4 4 ]
26: [ 0 4 5 ] [ 0 4 4 ]
27: [ 0 4 6 ] [ 0 4 4 ]
28: [ 0 4 7 ] [ 0 4 4 ]
29: [ 0 4 8 ] [ 0 4 8 ]
[_Joerg Arndt_, Apr 30 2011]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..66
- Joerg Arndt, Matters Computational (The Fxtbook), section 17.3.5, pp. 366-368
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Adalbert Kerber, A matrix of combinatorial numbers related to the symmetric groups, Discrete Math., 21 (1978), 319-321.
- A. Kerber, A matrix of combinatorial numbers related to the symmetric groups<, Discrete Math., 21 (1978), 319-321. [Annotated scanned copy]
- N. J. A. Sloane, Transforms
-
A004213 := proc(n)
add(4^(n-m)*combinat[stirling2](n,m),m=0..n) ;
end proc:
seq(A004213(n),n=0..30) ; # R. J. Mathar, Aug 20 2022
-
Table[4^n BellB[n, 1/4], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
-
a(n):=if n=0 then 1 else sum(4^(n-k)*binomial(n-1, k-1)*a(k-1), k, 1, n); /* Vladimir Kruchinin, Nov 28 2011 */
-
x='x+O('x^66);
egf=exp(intformal(exp(4*x))); /* = 1 + x + 5/2*x^2 + 29/6*x^3 + 67/8*x^4 + ... */
/* egf=exp(1/4*(exp(4*x)-1)) */ /* alternative computation */
Vec(serlaplace(egf)) /* Joerg Arndt, Apr 30 2011 */
A075498
Stirling2 triangle with scaled diagonals (powers of 3).
Original entry on oeis.org
1, 3, 1, 9, 9, 1, 27, 63, 18, 1, 81, 405, 225, 30, 1, 243, 2511, 2430, 585, 45, 1, 729, 15309, 24381, 9450, 1260, 63, 1, 2187, 92583, 234738, 137781, 28350, 2394, 84, 1, 6561, 557685, 2205225, 1888110, 563031, 71442, 4158, 108, 1
Offset: 1
[1]; [3,1]; [9,9,1]; ...; p(3,x) = x*(9 + 9*x + x^2).
From _Philippe Deléham_, Feb 13 2013: (Start)
Triangle (0, 3, 0, 6, 0, 9, 0, 12, 0, 15, 0, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
1;
0, 1;
0, 3, 1;
0, 9, 9, 1;
0, 27, 63, 18, 1;
0, 81, 405, 225, 30, 1;
(End)
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> 3^n, 9); # Peter Luschny, Jan 26 2016
-
Flatten[Table[3^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
rows = 9;
t = Table[3^n, {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
for(n=1, 11, for(m=1, n, print1(3^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A016152
a(n) = 4^(n-1)*(2^n-1).
Original entry on oeis.org
0, 1, 12, 112, 960, 7936, 64512, 520192, 4177920, 33488896, 268173312, 2146435072, 17175674880, 137422176256, 1099444518912, 8795824586752, 70367670435840, 562945658454016, 4503582447501312, 36028728299487232
Offset: 0
-
[4^(n-1)*(2^n-1): n in [0..40]]; // Vincenzo Librandi, Apr 26 2011
-
Table[4^(n - 1) (2^n - 1), {n, 0, 19}] (* Michael De Vlieger, Nov 30 2015 *)
-
a(n)=4^(n-1)*(2^n-1) \\ Charles R Greathouse IV, Oct 07 2015
-
my(x='x+O('x^30)); concat(0, Vec(x/((1-4*x)*(1-8*x)))) \\ Altug Alkan, Dec 04 2015
-
[lucas_number1(n,12,32) for n in range(0, 20)] # Zerinvary Lajos, Apr 27 2009
A075500
Stirling2 triangle with scaled diagonals (powers of 5).
Original entry on oeis.org
1, 5, 1, 25, 15, 1, 125, 175, 30, 1, 625, 1875, 625, 50, 1, 3125, 19375, 11250, 1625, 75, 1, 15625, 196875, 188125, 43750, 3500, 105, 1, 78125, 1984375, 3018750, 1063125, 131250, 6650, 140, 1, 390625, 19921875
Offset: 1
[1]; [5,1]; [25,15,1]; ...; p(3,x) = x(25 + 15*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 5 1
* 25 15 1
* 125 175 30 1
* 625 1875 625 50 1
* 3125 19375 11250 1625 75 1
* 15625 196875 188125 43750 3500 105 1
* 78125 1984375 3018750 1063125 131250 6650 140 1
(End)
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> 5^n, 9); # Peter Luschny, Jan 28 2016
-
Flatten[Table[5^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 10;
M = BellMatrix[5^#&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
for(n=1, 11, for(m=1, n, print1(5^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A111578
Triangle T(n, m) = T(n-1, m-1) + (4m-3)*T(n-1, m) read by rows 1<=m<=n.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 31, 15, 1, 1, 156, 166, 28, 1, 1, 781, 1650, 530, 45, 1, 1, 3906, 15631, 8540, 1295, 66, 1, 1, 19531, 144585, 126651, 30555, 2681, 91, 1, 1, 97656, 1320796, 1791048, 646086, 86856, 4956, 120, 1, 1, 488281, 11984820, 24604420, 12774510
Offset: 1
The triangle starts in row n=1 as:
1;
1,1;
1,6,1;
1,31,15,1;
1,156,166,28,1;
Connection constants: Row 4: [1, 31, 15, 1] so
x^3 = 1 + 31*(x - 1) + 15*(x - 1)*(x - 5) + (x - 1)*(x - 5)*(x - 9). - _Peter Bala_, Jan 27 2015
-
T[n_, k_] := 1/(4^(k-1)*(k-1)!) * Sum[ (-1)^(k-j-1) * (4*j+1)^(n-1) * Binomial[k-1, j], {j, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Peter Bala *)
-
def A096038(n,m):
if n < 1 or m < 1 or m > n:
return 0
elif n <=2:
return 1
else:
return A096038(n-1,m-1)+(4*m-3)*A096038(n-1,m)
print( [A096038(n,m) for n in range(20) for m in range(1,n+1)] )
# R. J. Mathar, Oct 11 2009
Showing 1-10 of 13 results.
Comments