cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A075907 Fourth column of triangle A075499.

Original entry on oeis.org

1, 40, 1040, 22400, 435456, 7956480, 139694080, 2387968000, 40075329536, 663887544320, 10896534405120, 177653730508800, 2882307270639616, 46596186764738560, 751299029274460160, 12089975328525516800
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..3} A075513(4,m)*exp(4*(m+1)*x)/3!.

Crossrefs

Programs

  • Mathematica
    Table[(-4^n+24*8^n-81*12^n+64*16^n)/6,{n,0,20}] (* or *) LinearRecurrence[ {40,-560,3200,-6144},{1,40,1040,22400},20] (* Harvey P. Dale, Jun 04 2013 *)

Formula

a(n) = A075499(n+4, 4) = (4^n)*S2(n+4, 4) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = (-4^n + 24*8^n - 81*12^n + 64*16^n)/3!.
G.f.: 1/Product_{k=1..4} (1 - 4*k*x).
E.g.f.: (d^4/dx^4)(((exp(4*x)-1)/4)^4)/4! = (-exp(4*x) + 24*exp(8*x) - 81*exp(12*x) + 64*exp(16*x))/3!.
a(0)=1, a(1)=40, a(2)=1040, a(3)=22400, a(n) = 40*a(n-1) - 560*a(n-2) + 3200*a(n-3) - 6144*a(n-4). - Harvey P. Dale, Jun 04 2013

A075909 Sixth column of triangle A075499.

Original entry on oeis.org

1, 84, 4256, 169344, 5843712, 183794688, 5421678592, 152720375808, 4157366140928, 110282217357312, 2867778350481408, 73424436820180992, 1857023919127527424, 46511918954689069056, 1155904251854380335104
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..5} A075513(6,m)*exp(4*(m+1)*x)/5!.

Crossrefs

Formula

a(n) = A075499(n+6, 6) = (4^n)*S2(n+6, 6) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..5} A075513(6, m)*((m+1)*4)^n/5!.
G.f.: 1/Product_{k=1..6} (1 - 4*k*x).
E.g.f.: (d^6/dx^6)(((exp(4*x)-1)/4)^6)/6! = (-exp(4*x) + 160*exp(8*x) - 2430*exp(12*x) + 10240*exp(16*x) - 15625*exp(20*x) + 7776*exp(24*x))/5!.
Showing 1-2 of 2 results.