cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A263950 Array read by antidiagonals: T(n,k) is the number of lattices L in Z^k such that the quotient group Z^k / L is C_n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 6, 13, 15, 1, 1, 6, 28, 40, 31, 1, 1, 12, 31, 120, 121, 63, 1, 1, 8, 91, 156, 496, 364, 127, 1, 1, 12, 57, 600, 781, 2016, 1093, 255, 1, 1, 12, 112, 400, 3751, 3906, 8128, 3280, 511, 1, 1, 18, 117, 960, 2801, 22932, 19531, 32640
Offset: 1

Views

Author

Álvar Ibeas, Oct 30 2015

Keywords

Comments

All the enumerated lattices have full rank k, since the quotient group is finite.
For m>=1, T(n,k) is the number of lattices L in Z^k such that the quotient group Z^k / L is C_nm x (C_m)^(k-1); and also, (C_nm)^(k-1) x C_m.
Also, number of subgroups of (C_n)^k isomorphic to C_n (and also, to (C_n)^{k-1}), cf. [Butler, Lemma 1.4.1].
T(n,k) is the sum of the divisors d of n^(k-1) such that n^(k-1)/d is k-free. Namely, the coefficient in n^(-(k-1)*s) of the Dirichlet series zeta(s) * zeta(s-1) / zeta(ks).
Also, number of isomorphism classes of connected (C_n)-fold coverings of a connected graph with circuit rank k.
Columns are multiplicative functions.

Examples

			There are 7 = A160870(4,2) lattices of volume 4 in Z^2. Among them, only one (<(2,0), (0,2)>) gives the quotient group C_2 x C_2, whereas the rest give C_4. Hence, T(4,2) = 6 and T(1,2) = 1.
Array begins:
      k=1    k=2    k=3    k=4    k=5    k=6
n=1     1      1      1      1      1      1
n=2     1      3      7     15     31     63
n=3     1      4     13     40    121    364
n=4     1      6     28    120    496   2016
n=5     1      6     31    156    781   3906
n=6     1     12     91    600   3751  22932
		

References

  • Lynne M. Butler, Subgroup lattices and symmetric functions. Mem. Amer. Math. Soc., Vol. 112, No. 539, 1994.

Crossrefs

Programs

  • Mathematica
    f[p_, e_, k_] := p^((k - 1)*(e - 1))*(p^k - 1)/(p - 1); T[n_, 1] = T[1, k_] = 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 08 2022 *)

Formula

T(n,k) = J_k(n) / J_1(n) = (Sum_{d|n} mu(n/d) * d^k) / phi(n).
T(n,k) = n^(k-1) * Product_{p|n, p prime} (p^k - 1) / ((p - 1) * p^(k-1)).
Dirichlet g.f. of k-th column: zeta(s-k+1) * Product_{p prime} (1 + p^(-s) + p^(1-s) + ... + p^(k-2-s)).
If n is squarefree, T(n,k) = A160870(n,k) = A000203(n^(k-1)).
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{i=1..n} T(i, k) ~ c * n^k, where c = (1/k) * Product_{p prime} (1 + (p^(k-1)-1)/((p-1)*p^k)).
Sum_{i>=1} 1/T(i, k) = zeta(k-1)*zeta(k) * Product_{p prime} (1 - 2/p^k + 1/p^(2*k-1)), for k > 2. (End)
T(n,k) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^k). - Ridouane Oudra, Apr 03 2025

A016140 Expansion of 1/((1-3*x)*(1-8*x)).

Original entry on oeis.org

1, 11, 97, 803, 6505, 52283, 418993, 3354131, 26839609, 214736555, 1717951489, 13743789059, 109950843913, 879608345627, 7036871547985, 56294986732787, 450359936909017, 3602879624412299, 28823037382718881, 230584300224012515, 1844674405278884521, 14757395252691429371, 118059162052912494577, 944473296517443135443
Offset: 0

Views

Author

Keywords

Comments

In general, for expansion of 1/((1-b*x)*(1-c*x)): a(n) = (c^(n+1) - b^(n+1))/(c-b) = (b+c)*a(n-1) - b*c*a(n-2) = b*a(n-1) + c^n = c*a(n-1) + b^n = Sum_{i=0..n} b^i*c^(n-i). - Henry Bottomley, Jul 20 2000
8*a(n) gives the number of edges in the n-th-order Sierpiński carpet graph. - Eric W. Weisstein, Aug 19 2013

Crossrefs

Sequences with g.f. 1/((1-n*x)*(1-8*x)): A001018 (n=0), A023001 (n=1), A016131 (n=2), this sequence (n=3), A016152 (n=4), A016162 (n=5), A016170 (n=6), A016177 (n=7), A053539 (n=8), A016185 (n=9), A016186 (n=10), A016187 (n=11), A016188 (n=12), A060195 (n=16).
Cf. A190543.

Programs

Formula

a(n) = (8^(n+1) - 3^(n+1))/5.
a(n) = 11*a(n-1) - 24*a(n-2).
a(n) = 3*a(n-1) + 8^n.
a(n) = 8*a(n-1) + 3^n.
a(n) = Sum_{i=0..n} 3^i*8^(n-i).
E.g.f.: (1/5)*(8*exp(8*x) - 3*exp(3*x)). - G. C. Greubel, Nov 14 2024

A075499 Stirling2 triangle with scaled diagonals (powers of 4).

Original entry on oeis.org

1, 4, 1, 16, 12, 1, 64, 112, 24, 1, 256, 960, 400, 40, 1, 1024, 7936, 5760, 1040, 60, 1, 4096, 64512, 77056, 22400, 2240, 84, 1, 16384, 520192, 989184, 435456, 67200, 4256, 112, 1, 65536, 4177920, 12390400, 7956480, 1779456, 169344, 7392, 144, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(4*z) - 1)*x/4) - 1
Also the inverse Bell transform of the quadruple factorial numbers 4^n*n! (A047053) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			[1]; [4,1]; [16,12,1]; ...; p(3,x) = x(16 + 12*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*     1
*     4      1
*    16     12      1
*    64    112     24      1
*   256    960    400     40     1
*  1024   7936   5760   1040    60    1
*  4096  64512  77056  22400  2240   84   1
* 16384 520192 989184 435456 67200 4256 112 1
(End)
		

Crossrefs

Columns 1-7 are A000302, A016152, A019677, A075907-A075910. Row sums are A004213.

Programs

  • Mathematica
    Table[(4^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(4^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
  • Sage
    # uses[inverse_bell_transform from A265605]
    # Adds a column 1,0,0,... at the left side of the triangle.
    multifact_4_4 = lambda n: prod(4*k + 4 for k in (0..n-1))
    inverse_bell_matrix(multifact_4_4, 9) # Peter Luschny, Dec 31 2015
    

Formula

a(n, m) = (4^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*4)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 4m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-4k*x), m >= 1.
E.g.f. for m-th column: (((exp(4x)-1)/4)^m)/m!, m >= 1.

A092237 Maximum number of intercalates in a Latin square of order n.

Original entry on oeis.org

0, 1, 0, 12, 4, 27, 42, 112, 72
Offset: 1

Views

Author

Richard Bean, Feb 17 2004

Keywords

Comments

An intercalate is a 2 X 2 subsquare of a Latin square. a(10) >= 125, a(11) >= 172, a(12) >= 324.
a(13) >= 208, a(14) >= 391, a(15) >= 630, a(16) >= 960, a(17) >= 736, a(18) >= 729, a(19) >= 472, a(20) >= 1500, a(21) >= 884, a(22) >= 1497, a(23) >= 983, a(24) >= 1872, a(25) >= 1700, a(26) >= 2197, a(27) >= 648, a(28) >= 2940. - Eduard I. Vatutin, Mar 02 2025
If, in theory, all unordered pairs of rows and columns form intercalate in their intersection, total number of intercalates will be (n*(n-1))^2, so a(n) <= (n*(n-1))^2, a(n) is asymptotically less than O(n^4). In practice a(n) << (n*(n-1))^2. - Eduard I. Vatutin, Mar 11 2025
a(2^n-1) = 42*A006096(n) for n > 2. - Eduard I. Vatutin, Apr 23 2025
Due to existence of the pine Latin squares for even orders N=2n, a(2n) >= A383368(n). Pine Latin squares exist for all even orders, so a(N) >= (2k)^2 * (2k + 1) for N=4k and a(N) >= (2k+1)^3 for N=4k+2. Therefore, asymptotically maximum number of intercalates in Latin squares of even orders N greater or equal than o(k1*N^3), where k1 = 1/8. - Eduard I. Vatutin, Apr 30 2025
From Eduard I. Vatutin, Jul 01 2025: (Start)
Table showing minimums and maximums:
order | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
min number of intercalates | 0 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
max number of intercalates | 0 1 0 12 4 27 42 112 72 >=125 >=172 >=324 >=208 >=391 >=630 >=960 >=736 >=729 >=472 (this sequence)
.
order | 20 21 22 23 24 25 26 27 28 29
min number of intercalates | 0 0 0 0 0 0 <=15 0 <=1 0
max number of intercalates | >=1500 >=884 >=1497 >=983 >=1872 >=1700 >=2197 >=648 >=2940 ? (this sequence)
(End)

References

  • I. Wanless, Private communication, 2003.

Crossrefs

Formula

If n is a power of 2, a(n) = n^2*(n-1)/4 = A016152(log2(n)); if n is one less than a power of 2, a(n) = n*(n-1)*(n-3)/4 = A006096(log2(n+1))*42. - updated by Eduard I. Vatutin, Jun 28 2025

A147538 Numbers whose binary representation is the concatenation of n 1's and 2n-1 digits 0.

Original entry on oeis.org

2, 24, 224, 1920, 15872, 129024, 1040384, 8355840, 66977792, 536346624, 4292870144, 34351349760, 274844352512, 2198889037824, 17591649173504, 140735340871680, 1125891316908032, 9007164895002624, 72057456598974464, 576460202547609600
Offset: 1

Views

Author

Omar E. Pol, Nov 06 2008

Keywords

Comments

a(n) is the number whose binary representation is A138119(n).

Crossrefs

Cf. A138119.
Cf. A016152. - Omar E. Pol, Nov 13 2008

Programs

  • GAP
    List([1..20], n-> 2^(2*n-1)*(2^n -1)); # G. C. Greubel, Jan 12 2020
    
  • Magma
    [2^(2*n-1)*(2^n -1): n in [1..20]]; // G. C. Greubel, Jan 12 2020
    
  • Maple
    seq(2^(2*n-1)*(2^n -1), n=1..20); # G. C. Greubel, Jan 12 2020
  • Mathematica
    Table[FromDigits[Join[Table[1, {n}], Table[0, {2n - 1}]], 2], {n, 1, 20}] (* Stefan Steinerberger, Nov 11 2008 *)
  • PARI
    vector(20, n, 2^(2*n-1)*(2^n -1)) \\ G. C. Greubel, Jan 12 2020
    
  • Python
    def a(n): return ((1 << n) - 1) << (2*n-1)
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Feb 24 2021
  • Sage
    [2^(2*n-1)*(2^n -1) for n in (1..20)] # G. C. Greubel, Jan 12 2020
    

Formula

a(n) = 2^(2*n-1)*(2^n -1) = A081294(n)*A000225(n). - R. J. Mathar, Nov 09 2008
a(n) = 2*A016152(n). - Omar E. Pol, Nov 13 2008
From Colin Barker, Nov 04 2012: (Start)
a(n) = 12*a(n-1) - 32*a(n-2).
G.f.: 2*x/((1-4*x)*(1-8*x)). (End)

Extensions

Extended by R. J. Mathar and Stefan Steinerberger, Nov 09 2008

A016290 Expansion of g.f. 1/((1-2*x)*(1-4*x)*(1-8*x)).

Original entry on oeis.org

1, 14, 140, 1240, 10416, 85344, 690880, 5559680, 44608256, 357389824, 2861214720, 22898104320, 183218384896, 1465881288704, 11727587164160, 93822844764160, 750591347982336, 6004765143465984, 48038258586419200, 384306618446643200, 3074455146595352576, 24595649968853745664
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of quads in the EvenQuads-2^{n+2} deck. - Tanya Khovanova and MIT PRIMES STEP senior group, Jul 02 2023

Crossrefs

Programs

  • Magma
    [(2^n-6*4^n+8*8^n)/3 : n in [0..20]]; // Wesley Ivan Hurt, Jul 07 2014
  • Maple
    [seq(GBC(n+1,3,2)-GBC(n,3,2), n=2..30)]; # produces A016290 (cf. A006516).
    seq((2^n-6*4^n+8*8^n)/3, n=0..20);
    seq(binomial(2^n,3)/4, n=2..20); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-4x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[{14,-56,64},{1,14,140},30] (* Harvey P. Dale, Jul 23 2011 *)

Formula

G.f.: 1/((1-2*x)*(1-4*x)*(1-8*x)).
Difference of Gaussian binomial coefficients [ n+1, 3 ] - [ n, 3 ] (n >= 2).
a(n) = (2^n - 6*4^n + 8*8^n)/3. - James R. Buddenhagen, Dec 14 2003
a(n) = Sum_{0<=i,j,k,<=n; i+j+k=n} 2^i*4^j*8^k. - Hieronymus Fischer, Jun 25 2007
From Vincenzo Librandi, Mar 15 2011: (Start)
a(n) = 14*a(n-1) - 56*a(n-2) + 64*a(n-3) for n >= 3.
a(n) = 12*a(n-1) - 32*a(n-2) + 2^n with a(0)=1, a(1)=14. (End)
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(2*x)*(8*exp(6*x) - 6*exp(2*x) + 1)/3.
a(n) = A160873(n+2)/3. (End)

A019677 Expansion of 1/((1-4x)(1-8x)(1-12x)).

Original entry on oeis.org

1, 24, 400, 5760, 77056, 989184, 12390400, 152862720, 1867841536, 22682271744, 274333696000, 3309180026880, 39847582498816, 479270434504704, 5760041038643200, 69190860134154240, 830853267268304896, 9974742789667160064, 119732942204305408000
Offset: 0

Views

Author

Keywords

Crossrefs

Third column of triangle A075499.

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-8*x)*(1-12*x)))); /* or */ I:=[1, 24, 400]; [n le 3 select I[n] else 24*Self(n-1)-176*Self(n-2)+384*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 03 2013
  • Maple
    a:= n-> (Matrix(3, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [24, -176, 384][i], 0)))^n)[1, 1]: seq(a(n), n=0..25);  # Alois P. Heinz, Jul 03 2013
  • Mathematica
    CoefficientList[Series[1 / ((1 - 4 x) (1 - 8 x) (1 - 12 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 03 2013 *)
    LinearRecurrence[{24,-176,384},{1,24,400},20] (* Harvey P. Dale, Jul 18 2020 *)
  • PARI
    Vec(1/((1-4*x)*(1-8*x)*(1-12*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    

Formula

a(n) = (4^n)*Stirling2(n+3, 3), n >= 0, with Stirling2(n, m) = A008277(n, m).
a(n) = (4^n - 8*8^n + 9*12^n)/2.
G.f.: 1/((1-4*x)*(1-8*x)*(1-12*x)).
E.g.f.: (d^3/dx^3)((((exp(4*x)-1)/4)^3)/3!) = (exp(4*x) - 8*exp(8*x) + 9*exp(12*x))/2.
a(0)=1, a(1)=24, a(2)=400; for n > 2, a(n) = 24*a(n-1) - 176*a(n-2) + 384*a(n-3). - Vincenzo Librandi, Jul 03 2013
a(n) = 30*a(n-1) - 96*a(n-2) + 4^n. - Vincenzo Librandi, Jul 03 2013

A059409 a(n) = 4^n * (2^n - 1).

Original entry on oeis.org

0, 4, 48, 448, 3840, 31744, 258048, 2080768, 16711680, 133955584, 1072693248, 8585740288, 68702699520, 549688705024, 4397778075648, 35183298347008, 281470681743360, 2251782633816064, 18014329790005248, 144114913197948928, 1152920405095219200
Offset: 0

Views

Author

Keywords

Comments

Jordan's totient functions are described more fully in A059379 and A059380; for example, J_1(n) is Euler's totient function and J_2(n) the Moebius transform of squares.

Examples

			(4,48,448,3840,...) = (8,64,512,4096,...) - (2,12,56,240,...) - (1,3,7,15,...) - (1,1,1,1,...)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Programs

Formula

Equals J_n(8) (see A059379).
J_n(8) = 8^n - A024023(n) - A000225(n) - A000012(n).
a(n) = 4*A016152(n).
G.f.: 4*x / ( (8*x-1)*(4*x-1) ). - R. J. Mathar, Nov 23 2018
Sum_{n>0} 1/a(n) = E - 4/3, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022
a(n) = A291779(A008585(n)) = A045991(A000079(n)). - Mathew Englander, Feb 08 2024

A147816 Concatenation of n digits 1 and 2(n-1) digits 0.

Original entry on oeis.org

1, 1100, 1110000, 1111000000, 1111100000000, 1111110000000000, 1111111000000000000, 1111111100000000000000, 1111111110000000000000000, 1111111111000000000000000000, 1111111111100000000000000000000, 1111111111110000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Nov 13 2008

Keywords

Comments

a(n) is also A016152(n) written in base 2.

Examples

			n ...... a(n)
1 ....... 1
2 ...... 1100
3 ..... 1110000
4 .... 1111000000
5 ... 1111100000000
		

Crossrefs

Programs

  • Mathematica
    Array[(10^#-1)*10^(2*#-2)/9 &, 20] (* or *)
    LinearRecurrence[{1100, -100000}, {1, 1100}, 20] (* Paolo Xausa, Feb 27 2024 *)
  • PARI
    Vec(x/((100*x-1)*(1000*x-1))  + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

a(n) = A138119(n)/10.
a(n) = 1100*a(n-1)-100000*a(n-2). G.f.: x / ((100*x-1)*(1000*x-1)). - Colin Barker, Sep 16 2013
Showing 1-9 of 9 results.