cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A006096 Gaussian binomial coefficient [n, 3] for q = 2.

Original entry on oeis.org

1, 15, 155, 1395, 11811, 97155, 788035, 6347715, 50955971, 408345795, 3269560515, 26167664835, 209386049731, 1675267338435, 13402854502595, 107225699266755, 857817047249091, 6862582190715075, 54900840777134275, 439207459223777475
Offset: 3

Views

Author

Keywords

Comments

42*a(n) is a maximum number of intercalates in a Latin square of order 2^n-1 (see A092237). - Eduard I. Vatutin, Apr 24 2025

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), A006095 (k = 2), this sequence (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).
Cf. A092237.

Programs

  • Magma
    r:=3; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 06 2016
  • Maple
    seq((-1+7*2^n-14*4^n+8*8^n)/21,n=1..20);
    A006096:=1/(z-1)/(8*z-1)/(2*z-1)/(4*z-1); # Simon Plouffe in his 1992 dissertation with offset 0
  • Mathematica
    Drop[CoefficientList[Series[x^3/((1 - x) (1 - 2 x) (1 - 4 x) (1 - 8 x)), {x, 0, 30}], x], 3]
    QBinomial[Range[3,30],3,2] (* Harvey P. Dale, Jan 28 2013 *)
  • Sage
    [gaussian_binomial(n,3,2) for n in range(3,23)] # Zerinvary Lajos, May 24 2009
    

Formula

G.f.: x^3/((1-x)(1-2x)(1-4x)(1-8x)).
(With a different offset) a(n) = (-1+7*2^n-14*4^n+8*8^n)/21. - James R. Buddenhagen, Dec 14 2003
From Peter Bala, Jul 01 2025: (Start)
a(n) = (q^n - 1)*(q^(n-1) - 1)*(q^(n-2) - 1)/((q^3 - 1)*(q^2 - 1)*(q - 1)) at q = 2.
G.f. with an offset of 0: exp( Sum_{n >= 1} b(4*n)/b(n)*x^n/n ) = 1 + 15*x + 155*x^2 + ..., where b(n) = A000225(n) = 2^n - 1.
The following series telescope:
Sum_{n >= 3} 2^n/(a(n)*a(n+3)) = 420/72075;
Sum_{n >= 3} 4^n/(a(n)*a(n+3)) = 3416/72075;
Sum_{n >= 3} 8^n/(a(n)*a(n+3)) = 28296/72075;
Sum_{n >= 3} 16^n/(a(n)*a(n+3)) = 244748/72075;
Sum_{n >= 3} 32^n/(a(n)*a(n+3)) = 2415315/72075. (End)

A307163 Minimum number of intercalates in a diagonal Latin square of order n.

Original entry on oeis.org

0, 0, 0, 12, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 27 2019

Keywords

Comments

An intercalate is a 2 X 2 subsquare of a Latin square.
Every diagonal Latin square is a Latin square, so 0 <= a(n) <= A307164(n) <= A092237(n). - Eduard I. Vatutin, Sep 21 2020
Every intercalate is a partial loop and every partial loop is a loop, so 0 <= a(n) <= A307170(n) <= A307166(n). - Eduard I. Vatutin, Oct 19 2020
a(n)=0 for all orders n for which cyclic diagonal Latin squares exist (see A007310) due to all cyclic diagonal Latin squares don't have intercalates. - Eduard I. Vatutin, Aug 07 2023
a(n)=0 for all orders n for which diagonalized cyclic diagonal Latin squares exist (see A372922) due to all diagonalized cyclic diagonal Latin squares don't have intercalates. - Eduard I. Vatutin, Sep 24 2024
a(16) <= 2, a(17) = 0, a(18) <= 9, a(19) = 0, a(20) <= 1, a(21) <= 11, a(22) <= 9, a(23) = 0, a(24) <= 16, a(25) = 0, a(26) <= 29. - Eduard I. Vatutin, added Sep 10 2023, updated Mar 01 2025

Crossrefs

Extensions

a(9) added by Eduard I. Vatutin, Sep 21 2020
a(10)-a(13) added by Eduard I. Vatutin, Apr 01 2021
a(14)-a(15) added by Eduard I. Vatutin, Sep 24 2024

A307164 Maximum number of intercalates in a diagonal Latin square of order n.

Original entry on oeis.org

0, 0, 0, 12, 4, 9, 30, 112, 72
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 27 2019

Keywords

Comments

An intercalate is a 2 X 2 subsquare of a Latin square.
0 <= A307163(n) <= A307164(n) <= A092237(n). - Eduard I. Vatutin, Sep 21 2020
a(10) >= 109, a(11) >= 172, a(12) >= 324, a(13) >= 180, a(14) >= 391, a(15) >= 630, a(16) >= 960, a(17) >= 736, a(18) >= 547, a(19) >= 457, a(20) >= 1100, a(21) >= 785, a(22) >= 887, a(23) >= 899, a(24) >= 1680, a(25) >= 1700, a(26) >= 1299, a(27) >= 1372, a(28) >= 2892. - Eduard I. Vatutin, May 31 2021, updated Mar 02 2025
If, in theory, all unordered pairs of rows and columns form intercalate in their intersection, total number of intercalates will be (n*(n-1))^2, so a(n) <= (n*(n-1))^2, a(n) is asymptotically less than O(n^4). In practice a(n) << (n*(n-1))^2. - Eduard I. Vatutin, Mar 05 2025

Examples

			From _Eduard I. Vatutin_, May 31 2021: (Start)
One of the best known diagonal Latin squares of order n=5
  0 1 2 3 4
  4 2 0 1 3
  1 4 3 2 0
  3 0 1 4 2
  2 3 4 0 1
has 4 intercalates:
  . . 2 3 .   . . . . .   . . . . .   . . . . .
  . . . . .   . . 0 . 3   . . . . .   . . . . .
  . . 3 2 .   . . 3 . 0   1 . 3 . .   . 4 3 . .
  . . . . .   . . . . .   3 . 1 . .   . . . . .
  . . . . .   . . . . .   . . . . .   . 3 4 . .
so a(5)=4. (End)
		

Crossrefs

Extensions

a(9) added by Eduard I. Vatutin, Sep 21 2020

A016152 a(n) = 4^(n-1)*(2^n-1).

Original entry on oeis.org

0, 1, 12, 112, 960, 7936, 64512, 520192, 4177920, 33488896, 268173312, 2146435072, 17175674880, 137422176256, 1099444518912, 8795824586752, 70367670435840, 562945658454016, 4503582447501312, 36028728299487232
Offset: 0

Views

Author

Keywords

Comments

Numbers whose binary representation is the concatenation of n digits 1 and 2(n-1) digits 0, for n>0. (See A147816.) - Omar E. Pol, Nov 13 2008
a(n) is the number of lattices L in Z^n such that the quotient group Z^n / L is C_8. - Álvar Ibeas, Nov 29 2015
a(n) is a maximum number of intercalates in a Latin square of order 2^n (see A092237). - Eduard I. Vatutin, Apr 30 2025

Crossrefs

Second column of triangle A075499.

Programs

Formula

From Barry E. Williams, Jan 17 2000: (Start)
a(n) = ((8^(n+1)) - 4^(n+1))/4.
a(n) = 12a(n-1) - 32a(n-2), n>0; a(0)=1. (End)
a(n) = (4^(n-1))*Stirling2(n+1, 2), n>=0, with Stirling2(n, m)=A008277(n, m).
a(n) = -4^(n-1) + 2*8^(n-1).
E.g.f. for a(n+1), n>=0: d^2/dx^2((((exp(4*x)-1)/4)^2)/2!) = -exp(4*x) + 2*exp(8*x).
G.f.: x/((1-4*x)*(1-8*x)).
((6+sqrt4)^n - (6-sqrt4)^n)/4 in Fibonacci form. Offset 1. a(3)=112. - Al Hakanson (hawkuu(AT)gmail.com), Dec 31 2008
a(n) + A160873(n) + A006096(n) = A006096(n+2), for n > 2. - Álvar Ibeas, Nov 29 2015
Sum_{n>0} 1/a(n) = 4*E - 16/3, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022

A091323 Minimum number of transversals in a Latin square of order 2n+1.

Original entry on oeis.org

1, 3, 3, 3, 68
Offset: 0

Views

Author

Richard Bean, Feb 17 2004

Keywords

Comments

Ryser conjectured that a(n) >= 1 for all n. For even orders the number is 0, since the group table for Z_2n has no transversals.
a(5)<=814, a(6)<=43093, a(7)<=215721. - Eduard I. Vatutin, added Apr 09 2024, updated Jan 13 2025

References

  • H. J. Ryser, Neuere Probleme der Kombinatorik. Vortraege ueber Kombinatorik, Oberwolfach, 1967, Mathematisches Forschungsinstitut Oberwolfach, pp. 69-91.

Crossrefs

Extensions

a(4) from Brendan McKay and Ian Wanless, May 23 2004

A383368 Number of intercalates in pine Latin squares of order 2n.

Original entry on oeis.org

1, 12, 27, 80, 125, 252, 343, 576, 729, 1100, 1331, 1872, 2197, 2940, 3375, 4352, 4913, 6156, 6859, 8400, 9261, 11132, 12167, 14400, 15625
Offset: 1

Views

Author

Eduard I. Vatutin, Apr 24 2025

Keywords

Comments

Pine Latin square is a none canonical composite Latin square of order N=2*K formed from specially arranged cyclic Latin squares of order K.
By construction, pine Latin square is determined one-to-one by the cyclic square used, so number of pine Latin squares of order N is equal to number of cyclic Latin squares of order N/2.
All pine Latin squares are horizontally symmetric column-inverse Latin squares.
All pine Latin squares for selected order N are isomorphic one to another as Latin squares, so they have same properties (number of transversals, intercalates, etc.).
Pine Latin squares have interesting properties, for example, maximum known number of intercalates for some orders N (at least N in {2, 4, 6, 10, 18}).
Pine Latin squares do not exist for odd orders due to they are horizontally symmetric.
Pine Latin squares of order N=2n exists for all even orders due to existing of corresponding cyclic Latin squares of order n. According to this, maximum number of intercalates in a Latin square A092237(N) >= (2k)^2 * (2k + 1) for N=4k and A092237(N) >= (2k+1)^3 for N=4k+2. Therefore, asimptotically maximum number of intercalates in Latin squares of even orders N greater or equal than o(k1*N^3), where k1 = 1/8.

Examples

			For order N=8 pine Latin square
  0 1 2 3 4 5 6 7
  1 2 3 0 7 4 5 6
  2 3 0 1 6 7 4 5
  3 0 1 2 5 6 7 4
  4 5 6 7 0 1 2 3
  5 6 7 4 3 0 1 2
  6 7 4 5 2 3 0 1
  7 4 5 6 1 2 3 0
have 80 intercalates.
.
For order N=10 pine Latin square
  0 1 2 3 4 5 6 7 8 9
  1 2 3 4 0 9 5 6 7 8
  2 3 4 0 1 8 9 5 6 7
  3 4 0 1 2 7 8 9 5 6
  4 0 1 2 3 6 7 8 9 5
  5 6 7 8 9 0 1 2 3 4
  6 7 8 9 5 4 0 1 2 3
  7 8 9 5 6 3 4 0 1 2
  8 9 5 6 7 2 3 4 0 1
  9 5 6 7 8 1 2 3 4 0
have 125 intercalates.
.
For order N=12 pine Latin square
  0 1 2 3 4 5 6 7 8 9 10 11
  1 2 3 4 5 0 11 6 7 8 9 10
  2 3 4 5 0 1 10 11 6 7 8 9
  3 4 5 0 1 2 9 10 11 6 7 8
  4 5 0 1 2 3 8 9 10 11 6 7
  5 0 1 2 3 4 7 8 9 10 11 6
  6 7 8 9 10 11 0 1 2 3 4 5
  7 8 9 10 11 6 5 0 1 2 3 4
  8 9 10 11 6 7 4 5 0 1 2 3
  9 10 11 6 7 8 3 4 5 0 1 2
  10 11 6 7 8 9 2 3 4 5 0 1
  11 6 7 8 9 10 1 2 3 4 5 0
have 252 intercalates.
		

Crossrefs

Formula

Hypothesis: For all known pine Latin squares of orders N=4k+2 number of intercalates a(n) = a(N/2)= a(2k+1) = (N/2)^3 = (2k+1)^3 = A016755((n-1)/2) (verified for N<29).
Hypothesis: For all known pine Latin squares of orders N=4k number of intercalates a(n) = a(N/2) = a(2k) = (N/2)^2 + (N/2)^3 = 4*k^2 + 8*k^3 = (2k)^2 * (2k+1) = 2*A089207(n/2) = 4*A099721(n/2) (verified for N<29).

A382952 Maximum number of intercalates in an extended self-orthogonal diagonal Latin square of order n.

Original entry on oeis.org

0, 0, 0, 12, 0, 0, 18, 112, 72, 53
Offset: 1

Views

Author

Eduard I. Vatutin, Apr 09 2025

Keywords

Comments

A self-orthogonal diagonal Latin square (SODLS) is a diagonal Latin square orthogonal to its transpose. An extended self-orthogonal diagonal Latin square (ESODLS) is a diagonal Latin square that has an orthogonal diagonal Latin square from the same main class. SODLS is a special case of ESODLS.
Table showing minimums and maximums:
order | 4 5 6 7 8 9 10
min number of intercalates | 12 0 - 0 16 0 5
max number of intercalates | 12 0 - 18 112 72 53 (this sequence)

Crossrefs

A383570 Number of transversals in pine Latin squares of order 4n.

Original entry on oeis.org

8, 384, 76032, 62881792
Offset: 1

Views

Author

Eduard I. Vatutin, Apr 30 2025

Keywords

Comments

A pine Latin square is a not necessarily canonical composite Latin square of order N=2*K formed from specially arranged cyclic Latin squares of order K.
By construction, pine Latin square is determined one-to-one by the cyclic square used, so number of pine Latin squares of order N is equal to number of cyclic Latin squares of order N/2.
All pine Latin squares are horizontally symmetric column-inverse Latin squares.
All pine Latin squares for selected order N are isomorphic one to another as Latin squares, so they have same properties (number of transversals, intercalates, etc.).
Pine Latin squares have interesting properties, for example, maximum known number of intercalates (see A383368 and A092237) for some orders N (at least N in {2, 4, 6, 10, 18}).
Pine Latin squares do not exist for odd orders because they must be horizontally symmetric.
Hypothesis: number of transversals in pine Latin squares of all orders N=4k+2 is zero (verified for orders N<=18).

Examples

			For order N=8 pine Latin square
  0 1 2 3 4 5 6 7
  1 2 3 0 7 4 5 6
  2 3 0 1 6 7 4 5
  3 0 1 2 5 6 7 4
  4 5 6 7 0 1 2 3
  5 6 7 4 3 0 1 2
  6 7 4 5 2 3 0 1
  7 4 5 6 1 2 3 0
has 384 transversals.
.
For order N=10 pine Latin square
  0 1 2 3 4 5 6 7 8 9
  1 2 3 4 0 9 5 6 7 8
  2 3 4 0 1 8 9 5 6 7
  3 4 0 1 2 7 8 9 5 6
  4 0 1 2 3 6 7 8 9 5
  5 6 7 8 9 0 1 2 3 4
  6 7 8 9 5 4 0 1 2 3
  7 8 9 5 6 3 4 0 1 2
  8 9 5 6 7 2 3 4 0 1
  9 5 6 7 8 1 2 3 4 0
has no transversals.
.
For order N=12 pine Latin square
  0 1 2 3 4 5 6 7 8 9 10 11
  1 2 3 4 5 0 11 6 7 8 9 10
  2 3 4 5 0 1 10 11 6 7 8 9
  3 4 5 0 1 2 9 10 11 6 7 8
  4 5 0 1 2 3 8 9 10 11 6 7
  5 0 1 2 3 4 7 8 9 10 11 6
  6 7 8 9 10 11 0 1 2 3 4 5
  7 8 9 10 11 6 5 0 1 2 3 4
  8 9 10 11 6 7 4 5 0 1 2 3
  9 10 11 6 7 8 3 4 5 0 1 2
  10 11 6 7 8 9 2 3 4 5 0 1
  11 6 7 8 9 10 1 2 3 4 5 0
has 76032 transversals.
		

Crossrefs

A368182 a(n) is the number of distinct numbers of intercalates in Latin squares of order n.

Original entry on oeis.org

1, 1, 1, 2, 2, 9, 23, 61
Offset: 1

Views

Author

Eduard I. Vatutin, Feb 15 2024

Keywords

Comments

a(9)>=64, a(10)>=103, a(11)>=145, a(12)>=259, a(13)>=200, a(14)>=362, a(15)>=536, a(16)>=794, a(17)>=705, a(18)>=655, a(19)>=469, a(20)>=1362, a(21)>=985, a(22)>=1435, a(23)>=967, a(24)>=1754, a(25)>=1679, a(26)>=2040, a(28)>=2803. - Eduard I. Vatutin, added Aug 13 2024, updated Jun 25 2025

Examples

			For n=7, a Latin square of order 7 may have 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 26, 30, or 42 intercalates. There are 23 possibilities, so a(7)=23.
		

Crossrefs

A382270 Maximum number of intercalates in a Brown's diagonal Latin square of order 2n.

Original entry on oeis.org

0, 12, 9, 112, 57
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 20 2025

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square (see A339641).
Brown's diagonal Latin squares are special case of plain symmetry diagonal Latin squares that do not exist for odd orders.
a(6)>=252, a(7)>=385, a(8)>=960, a(9)>=329, a(10)>=356, a(11)>=497, a(12)>=1008, a(13)>=497, a(14)>=524.

Crossrefs

Showing 1-10 of 11 results. Next