A006096
Gaussian binomial coefficient [n, 3] for q = 2.
Original entry on oeis.org
1, 15, 155, 1395, 11811, 97155, 788035, 6347715, 50955971, 408345795, 3269560515, 26167664835, 209386049731, 1675267338435, 13402854502595, 107225699266755, 857817047249091, 6862582190715075, 54900840777134275, 439207459223777475
Offset: 3
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- T. D. Noe, Table of n, a(n) for n=3..203
- Ronald Orozco López, Generating Functions of Generalized Simplicial Polytopic Numbers and (s,t)-Derivatives of Partial Theta Function, arXiv:2408.08943 [math.CO], 2024. See p. 13.
- Ronald Orozco López, Simplicial d-Polytopic Numbers Defined on Generalized Fibonacci Polynomials, arXiv:2501.11490 [math.CO], 2025. See p. 10.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Eduard I. Vatutin, About interconnection between maximum number of intercalates in Latin squares of order N=2^n-1 and Gaussian binomial coefficients [n,3] for q=2 (in Russian).
- Index entries for linear recurrences with constant coefficients, signature (15,-70,120,-64).
-
r:=3; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 06 2016
-
seq((-1+7*2^n-14*4^n+8*8^n)/21,n=1..20);
A006096:=1/(z-1)/(8*z-1)/(2*z-1)/(4*z-1); # Simon Plouffe in his 1992 dissertation with offset 0
-
Drop[CoefficientList[Series[x^3/((1 - x) (1 - 2 x) (1 - 4 x) (1 - 8 x)), {x, 0, 30}], x], 3]
QBinomial[Range[3,30],3,2] (* Harvey P. Dale, Jan 28 2013 *)
-
[gaussian_binomial(n,3,2) for n in range(3,23)] # Zerinvary Lajos, May 24 2009
A307163
Minimum number of intercalates in a diagonal Latin square of order n.
Original entry on oeis.org
0, 0, 0, 12, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian)
- E. I. Vatutin, About the minimum number of intercalates in a diagonal Latin squares of order 9 (in Russian)
- E. I. Vatutin, On the inequalities of the minimum and maximum numerical characteristics of diagonal Latin squares for intercalates, loops and partial loops (in Russian)
- Eduard I. Vatutin, About the heuristic approximation of the spectrum of number of intercalates in diagonal Latin squares of order 14 (in Russian)
- Eduard I. Vatutin, About the minimum number of intercalates in diagonal Latin squares of order 15 (in Russian)
- E. Vatutin, A. Belyshev, N. Nikitina, and M. Manzuk, Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10, Communications in Computer and Information Science, Vol. 1304, Springer, 2020, pp. 127-146, DOI: 10.1007/978-3-030-66895-2_9.
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
- Eduard I. Vatutin, Proving list (best known examples).
- Index entries for sequences related to Latin squares and rectangles.
A307164
Maximum number of intercalates in a diagonal Latin square of order n.
Original entry on oeis.org
0, 0, 0, 12, 4, 9, 30, 112, 72
Offset: 1
From _Eduard I. Vatutin_, May 31 2021: (Start)
One of the best known diagonal Latin squares of order n=5
0 1 2 3 4
4 2 0 1 3
1 4 3 2 0
3 0 1 4 2
2 3 4 0 1
has 4 intercalates:
. . 2 3 . . . . . . . . . . . . . . . .
. . . . . . . 0 . 3 . . . . . . . . . .
. . 3 2 . . . 3 . 0 1 . 3 . . . 4 3 . .
. . . . . . . . . . 3 . 1 . . . . . . .
. . . . . . . . . . . . . . . . 3 4 . .
so a(5)=4. (End)
- Eduard I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- Eduard I. Vatutin, About the maximum number of intercalates in a diagonal Latin squares of order 9 (in Russian).
- Eduard I. Vatutin, About the heuristic approximation of the spectrum of number of intercalates in diagonal Latin squares of order 14 (in Russian).
- Eduard I. Vatutin, Proving list (best known examples).
- Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, and Maxim Manzuk, Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10, High-Performance Computing Systems and Technologies in Sci. Res., Automation of Control and Production (HPCST 2020), Communications in Comp. and Inf. Sci. book series (CCIS, Vol. 1304) Springer, Cham (2020), 127-146.
- Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, Alexandr M. Albertyan, and Ilya I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021), Tula, 2021, pp. 7-17 (in Russian).
- E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022. pp. 314-315.
- Index entries for sequences related to Latin squares and rectangles.
A016152
a(n) = 4^(n-1)*(2^n-1).
Original entry on oeis.org
0, 1, 12, 112, 960, 7936, 64512, 520192, 4177920, 33488896, 268173312, 2146435072, 17175674880, 137422176256, 1099444518912, 8795824586752, 70367670435840, 562945658454016, 4503582447501312, 36028728299487232
Offset: 0
-
[4^(n-1)*(2^n-1): n in [0..40]]; // Vincenzo Librandi, Apr 26 2011
-
Table[4^(n - 1) (2^n - 1), {n, 0, 19}] (* Michael De Vlieger, Nov 30 2015 *)
-
a(n)=4^(n-1)*(2^n-1) \\ Charles R Greathouse IV, Oct 07 2015
-
my(x='x+O('x^30)); concat(0, Vec(x/((1-4*x)*(1-8*x)))) \\ Altug Alkan, Dec 04 2015
-
[lucas_number1(n,12,32) for n in range(0, 20)] # Zerinvary Lajos, Apr 27 2009
A091323
Minimum number of transversals in a Latin square of order 2n+1.
Original entry on oeis.org
- H. J. Ryser, Neuere Probleme der Kombinatorik. Vortraege ueber Kombinatorik, Oberwolfach, 1967, Mathematisches Forschungsinstitut Oberwolfach, pp. 69-91.
A383368
Number of intercalates in pine Latin squares of order 2n.
Original entry on oeis.org
1, 12, 27, 80, 125, 252, 343, 576, 729, 1100, 1331, 1872, 2197, 2940, 3375, 4352, 4913, 6156, 6859, 8400, 9261, 11132, 12167, 14400, 15625
Offset: 1
For order N=8 pine Latin square
0 1 2 3 4 5 6 7
1 2 3 0 7 4 5 6
2 3 0 1 6 7 4 5
3 0 1 2 5 6 7 4
4 5 6 7 0 1 2 3
5 6 7 4 3 0 1 2
6 7 4 5 2 3 0 1
7 4 5 6 1 2 3 0
have 80 intercalates.
.
For order N=10 pine Latin square
0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 9 5 6 7 8
2 3 4 0 1 8 9 5 6 7
3 4 0 1 2 7 8 9 5 6
4 0 1 2 3 6 7 8 9 5
5 6 7 8 9 0 1 2 3 4
6 7 8 9 5 4 0 1 2 3
7 8 9 5 6 3 4 0 1 2
8 9 5 6 7 2 3 4 0 1
9 5 6 7 8 1 2 3 4 0
have 125 intercalates.
.
For order N=12 pine Latin square
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 0 11 6 7 8 9 10
2 3 4 5 0 1 10 11 6 7 8 9
3 4 5 0 1 2 9 10 11 6 7 8
4 5 0 1 2 3 8 9 10 11 6 7
5 0 1 2 3 4 7 8 9 10 11 6
6 7 8 9 10 11 0 1 2 3 4 5
7 8 9 10 11 6 5 0 1 2 3 4
8 9 10 11 6 7 4 5 0 1 2 3
9 10 11 6 7 8 3 4 5 0 1 2
10 11 6 7 8 9 2 3 4 5 0 1
11 6 7 8 9 10 1 2 3 4 5 0
have 252 intercalates.
A382952
Maximum number of intercalates in an extended self-orthogonal diagonal Latin square of order n.
Original entry on oeis.org
0, 0, 0, 12, 0, 0, 18, 112, 72, 53
Offset: 1
A383570
Number of transversals in pine Latin squares of order 4n.
Original entry on oeis.org
8, 384, 76032, 62881792
Offset: 1
For order N=8 pine Latin square
0 1 2 3 4 5 6 7
1 2 3 0 7 4 5 6
2 3 0 1 6 7 4 5
3 0 1 2 5 6 7 4
4 5 6 7 0 1 2 3
5 6 7 4 3 0 1 2
6 7 4 5 2 3 0 1
7 4 5 6 1 2 3 0
has 384 transversals.
.
For order N=10 pine Latin square
0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 9 5 6 7 8
2 3 4 0 1 8 9 5 6 7
3 4 0 1 2 7 8 9 5 6
4 0 1 2 3 6 7 8 9 5
5 6 7 8 9 0 1 2 3 4
6 7 8 9 5 4 0 1 2 3
7 8 9 5 6 3 4 0 1 2
8 9 5 6 7 2 3 4 0 1
9 5 6 7 8 1 2 3 4 0
has no transversals.
.
For order N=12 pine Latin square
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 0 11 6 7 8 9 10
2 3 4 5 0 1 10 11 6 7 8 9
3 4 5 0 1 2 9 10 11 6 7 8
4 5 0 1 2 3 8 9 10 11 6 7
5 0 1 2 3 4 7 8 9 10 11 6
6 7 8 9 10 11 0 1 2 3 4 5
7 8 9 10 11 6 5 0 1 2 3 4
8 9 10 11 6 7 4 5 0 1 2 3
9 10 11 6 7 8 3 4 5 0 1 2
10 11 6 7 8 9 2 3 4 5 0 1
11 6 7 8 9 10 1 2 3 4 5 0
has 76032 transversals.
A368182
a(n) is the number of distinct numbers of intercalates in Latin squares of order n.
Original entry on oeis.org
1, 1, 1, 2, 2, 9, 23, 61
Offset: 1
For n=7, a Latin square of order 7 may have 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 26, 30, or 42 intercalates. There are 23 possibilities, so a(7)=23.
- Eduard I. Vatutin, About the intercalates spectra in a Latin squares of orders 1-8 (in Russian).
- Eduard I. Vatutin, Graphical representation of the spectra.
- Eduard I. Vatutin, Proving lists (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28).
- Index entries for sequences related to Latin squares and rectangles.
A382270
Maximum number of intercalates in a Brown's diagonal Latin square of order 2n.
Original entry on oeis.org
0, 12, 9, 112, 57
Offset: 1
Showing 1-10 of 11 results.
Comments