cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A307164 Maximum number of intercalates in a diagonal Latin square of order n.

Original entry on oeis.org

0, 0, 0, 12, 4, 9, 30, 112, 72
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 27 2019

Keywords

Comments

An intercalate is a 2 X 2 subsquare of a Latin square.
0 <= A307163(n) <= A307164(n) <= A092237(n). - Eduard I. Vatutin, Sep 21 2020
a(10) >= 109, a(11) >= 172, a(12) >= 324, a(13) >= 180, a(14) >= 391, a(15) >= 630, a(16) >= 960, a(17) >= 736, a(18) >= 547, a(19) >= 457, a(20) >= 1100, a(21) >= 785, a(22) >= 887, a(23) >= 899, a(24) >= 1680, a(25) >= 1700, a(26) >= 1299, a(27) >= 1372, a(28) >= 2892. - Eduard I. Vatutin, May 31 2021, updated Mar 02 2025
If, in theory, all unordered pairs of rows and columns form intercalate in their intersection, total number of intercalates will be (n*(n-1))^2, so a(n) <= (n*(n-1))^2, a(n) is asymptotically less than O(n^4). In practice a(n) << (n*(n-1))^2. - Eduard I. Vatutin, Mar 05 2025

Examples

			From _Eduard I. Vatutin_, May 31 2021: (Start)
One of the best known diagonal Latin squares of order n=5
  0 1 2 3 4
  4 2 0 1 3
  1 4 3 2 0
  3 0 1 4 2
  2 3 4 0 1
has 4 intercalates:
  . . 2 3 .   . . . . .   . . . . .   . . . . .
  . . . . .   . . 0 . 3   . . . . .   . . . . .
  . . 3 2 .   . . 3 . 0   1 . 3 . .   . 4 3 . .
  . . . . .   . . . . .   3 . 1 . .   . . . . .
  . . . . .   . . . . .   . . . . .   . 3 4 . .
so a(5)=4. (End)
		

Crossrefs

Extensions

a(9) added by Eduard I. Vatutin, Sep 21 2020

A345760 a(n) is the number of distinct numbers of intercalates of order n diagonal Latin squares.

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 21, 61, 64
Offset: 1

Views

Author

Eduard I. Vatutin, Jun 26 2021

Keywords

Comments

a(n) <= A307164(n) - A307163(n) + 1.
a(n) <= A287764(n).
a(10) >= 98, a(11) >= 145, a(12) >= 259, a(13) >= 200, a(14) >= 362, a(15) >= 536, a(16) >= 792, a(17) >= 685, a(18) >= 535, a(19) >= 447, a(20) >= 1011, a(21) >= 747, a(22) >= 872, a(23) >= 885, a(24) >= 1610, a(25) >= 1677, a(26) >= 1266, a(27) >= 1337, a(28) >= 2795. - Eduard I. Vatutin, Oct 02 2021, updated Mar 02 2025

Examples

			For n=7 the number of intercalates that a diagonal Latin square of order 7 may have is 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 26, or 30. Since there are 21 distinct values, a(7)=21.
		

Crossrefs

Extensions

a(9) added by Eduard I. Vatutin, Oct 22 2022

A307166 Minimum number of loops in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 12, 10, 27, 21, 40
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 27 2019

Keywords

Comments

A loop in a Latin square is a sequence of cells v1=L[i1,j1] -> v2=L[i1,j2] -> v1=L[i2,j2] -> ... -> v2=L[im,j1] -> v1=L[i1,j1] of length 2*m that consists of a pair of values {v1, v2}.
For diagonal Latin squares of order 4 all loops are intercalates. - Eduard I. Vatutin, Oct 05 2020
From Eduard I. Vatutin, Oct 26 2020: (Start)
Every intercalate is a partial loop and every partial loop is a loop, so 0 <= A307163(n) <= A307170(n) <= a(n).
0 <= a(n) <= A307167(n).
(End)

Examples

			For example, the square
  2 4 3 5 0 1
  1 0 4 3 2 5
  0 2 5 4 1 3
  5 3 0 1 4 2
  4 5 1 2 3 0
  3 1 2 0 5 4
has a loop
  2 4 . . . .
  . . . . . .
  . 2 . 4 . .
  . . . . . .
  4 . . 2 . .
  . . . . . .
consisting of the sequence of cells L[1,1]=2 -> L[1,2]=4 -> L[3,2]=2 -> L[3,4]=4 -> L[5,4]=2 -> L[5,1]=4 -> L[1,1]=2 with length 6.
The total number of loops for this square is 21.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 05 2020

A307167 Maximum number of loops in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 12, 14, 27, 53, 112
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 27 2019

Keywords

Comments

A loop in a Latin square is a sequence of cells v1=L[i1,j1] -> v2=L[i1,j2] -> v1=L[i2,j2] -> ... -> v2=L[im,j1] -> v1=L[i1,j1] of length 2*m that consists of a pair of values {v1, v2}.
For diagonal Latin squares of order 4 all loops are intercalates. - Eduard I. Vatutin, Oct 05 2020

Examples

			For example, the square
  2 4 3 5 0 1
  1 0 4 3 2 5
  0 2 5 4 1 3
  5 3 0 1 4 2
  4 5 1 2 3 0
  3 1 2 0 5 4
has a loop
  2 4 . . . .
  . . . . . .
  . 2 . 4 . .
  . . . . . .
  4 . . 2 . .
  . . . . . .
consisting of the sequence of cells L[1,1]=2 -> L[1,2]=4 -> L[3,2]=2 -> L[3,4]=4 -> L[5,4]=2 -> L[5,1]=4 -> L[1,1]=2 with length 6.
The total number of loops for this square is 21.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 05 2020

A307170 Minimum number of partial loops in a diagonal Latin square of order n.

Original entry on oeis.org

0, 0, 0, 12, 0, 21, 0, 24
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 27 2019

Keywords

Comments

A loop in a Latin square is a sequence of cells v1=L[i1,j1] -> v2=L[i1,j2] -> v1=L[i2,j2] -> ... -> v2=L[im,j1] -> v1=L[i1,j1] of length 2*m that consists of a pair of values {v1, v2}. A partial loop is a loop with length < 2*n.
From Eduard I. Vatutin, Oct 20 2020: (Start)
Every intercalate is a partial loop and every partial loop is a loop, so 0 <= A307163(n) <= a(n) <= A307166(n).
0 <= a(n) <= A307171(n).
(End)

Examples

			For example, the square
  2 4 3 5 0 1
  1 0 4 3 2 5
  0 2 5 4 1 3
  5 3 0 1 4 2
  4 5 1 2 3 0
  3 1 2 0 5 4
has a loop
  2 4 . . . .
  . . . . . .
  . 2 . 4 . .
  . . . . . .
  4 . . 2 . .
  . . . . . .
consisting of the sequence of cells L[1,1]=2 -> L[1,2]=4 -> L[3,2]=2 -> L[3,4]=4 -> L[5,4]=2 -> L[5,1]=4 -> L[1,1]=2 with length 6 < 12.
The total number of loops for this square is 21, all of which are partial.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 05 2020

A307839 Minimum number of Latin subrectangles in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 137, 336, 884, 1968, 4545
Offset: 1

Views

Author

Eduard I. Vatutin, May 01 2019

Keywords

Comments

An Latin subrectangle is a m X k Latin rectangle of a Latin square of order n, 1 <= m <= n, 1 <= k <= n.

Examples

			For example, the square
  0 1 2 3 4 5 6
  4 2 6 5 0 1 3
  3 6 1 0 5 2 4
  6 3 5 4 1 0 2
  1 5 3 2 6 4 0
  5 0 4 6 2 3 1
  2 4 0 1 3 6 5
has a Latin subrectangle
  . . . . . . .
  . . 6 5 0 1 3
  . . . . . . .
  . . . . . . .
  . . . . . . .
  . . . . . . .
  . . 0 1 3 6 5
The total number of Latin subrectangles for this square is 2119.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 06 2020

A307840 Maximum number of Latin subrectangles in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 137, 348, 884, 2119, 5433
Offset: 1

Views

Author

Eduard I. Vatutin, May 01 2019

Keywords

Comments

An Latin subrectangle is a m X k Latin rectangle of a Latin square of order n, 1 <= m <= n, 1 <= k <= n.

Examples

			For example, the square
  0 1 2 3 4 5 6
  4 2 6 5 0 1 3
  3 6 1 0 5 2 4
  6 3 5 4 1 0 2
  1 5 3 2 6 4 0
  5 0 4 6 2 3 1
  2 4 0 1 3 6 5
has a Latin subrectangle
  . . . . . . .
  . . 6 5 0 1 3
  . . . . . . .
  . . . . . . .
  . . . . . . .
  . . . . . . .
  . . 0 1 3 6 5
The total number of Latin subrectangles for this square is 2119.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 06 2020

A360221 Minimum number of intercalates in an orthogonal diagonal Latin square of order n.

Original entry on oeis.org

0, 0, 0, 12, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Eduard I. Vatutin, Jan 30 2023

Keywords

Comments

An intercalate is a 2 X 2 subsquare of a Latin square.
An orthogonal diagonal Latin squares is a diagonal Latin square that has at least one orthogonal diagonal mate.
a(10) <= 1, a(11) = 0, a(12) <= 4, a(13) = 0. - Eduard I. Vatutin, added Jan 30 2023, updated Sep 24 2024

Crossrefs

A379665 Minimum number of intercalates in a Brown's diagonal Latin square of order 2n.

Original entry on oeis.org

0, 0, 12, 9, 16, 25
Offset: 0

Views

Author

Eduard I. Vatutin, Dec 29 2024

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square (see A339641).
Plain symmetry diagonal Latin squares do not exist for odd orders.
a(6)<=36, a(7)<=49, a(8)<=64, a(9)<=81, a(10)<=100, a(11)<=121, a(12)<=144, a(13)<=201, a(14)<=252. - Updated by Eduard I. Vatutin, Mar 01 2025
Hypothesis: minimum number of intercalates in Brown's diagonal Latin squares of order N=2n is equal to (N/2)^2 for N>4 (proved for N=6 and N=8 using Brute Force and for 10<=N<=24 using heuristic methods).

Crossrefs

Extensions

a(5)=25 added by Oleg S. Zaikin and Eduard I. Vatutin, Apr 08 2025

A382270 Maximum number of intercalates in a Brown's diagonal Latin square of order 2n.

Original entry on oeis.org

0, 12, 9, 112, 57
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 20 2025

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square (see A339641).
Brown's diagonal Latin squares are special case of plain symmetry diagonal Latin squares that do not exist for odd orders.
a(6)>=252, a(7)>=385, a(8)>=960, a(9)>=329, a(10)>=356, a(11)>=497, a(12)>=1008, a(13)>=497, a(14)>=524.

Crossrefs

Showing 1-10 of 11 results. Next