cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307841 Minimum number of nontrivial Latin subrectangles in a diagonal Latin square of order n.

Original entry on oeis.org

0, 0, 0, 12, 0, 51, 0, 36
Offset: 1

Views

Author

Eduard I. Vatutin, May 01 2019

Keywords

Comments

A Latin subrectangle is an m X k Latin rectangle of a Latin square of order n, 1 <= m <= n, 1 <= k <= n.
A nontrivial Latin subrectangle is an m X k Latin rectangle of a Latin square of order n, 1 < m < n, 1 < k < n.

Examples

			For example, the square
  0 1 2 3 4 5 6
  4 2 6 5 0 1 3
  3 6 1 0 5 2 4
  6 3 5 4 1 0 2
  1 5 3 2 6 4 0
  5 0 4 6 2 3 1
  2 4 0 1 3 6 5
has a nontrivial Latin subrectangle
  . . . . . . .
  . . 6 5 0 1 3
  . . . . . . .
  . . . . . . .
  . . . . . . .
  . . . . . . .
  . . 0 1 3 6 5
The total number of Latin subrectangles for this square is 2119 and the number of nontrivial Latin subrectangles is only 151.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 06 2020

A307840 Maximum number of Latin subrectangles in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 137, 348, 884, 2119, 5433
Offset: 1

Views

Author

Eduard I. Vatutin, May 01 2019

Keywords

Comments

An Latin subrectangle is a m X k Latin rectangle of a Latin square of order n, 1 <= m <= n, 1 <= k <= n.

Examples

			For example, the square
  0 1 2 3 4 5 6
  4 2 6 5 0 1 3
  3 6 1 0 5 2 4
  6 3 5 4 1 0 2
  1 5 3 2 6 4 0
  5 0 4 6 2 3 1
  2 4 0 1 3 6 5
has a Latin subrectangle
  . . . . . . .
  . . 6 5 0 1 3
  . . . . . . .
  . . . . . . .
  . . . . . . .
  . . . . . . .
  . . 0 1 3 6 5
The total number of Latin subrectangles for this square is 2119.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 06 2020
Showing 1-2 of 2 results.