cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A059410 J_n(9) (see A059379).

Original entry on oeis.org

0, 6, 72, 702, 6480, 58806, 530712, 4780782, 43040160, 387400806, 3486725352, 31380882462, 282429005040, 2541864234006, 22876787671992, 205891117745742, 1853020145805120, 16677181570526406, 150094634909578632, 1350851716510730622, 12157665455570144400, 109418989121052006006
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Programs

Formula

a(n) = 9^n - 3^n; a(n) = 12*a(n-1) - 27*a(n-2) for n > 1. - Vincenzo Librandi, Jun 03 2011
From Vincenzo Librandi, Oct 04 2014: (Start)
a(n) = 3^n*(3^n-1) = A000244(n)*A024023(n).
G.f.: 6*x/((1-3*x)*(1-9*x)). (End)
a(n) = 6*A016142(n). - R. J. Mathar, Nov 23 2018
E.g.f.: 2*exp(6*x)*sinh(3*x). - Elmo R. Oliveira, Mar 31 2025

A248337 a(n) = 6^n - 4^n.

Original entry on oeis.org

0, 2, 20, 152, 1040, 6752, 42560, 263552, 1614080, 9815552, 59417600, 358602752, 2160005120, 12993585152, 78095728640, 469111242752, 2816814940160, 16909479575552, 101491237191680, 609084862103552, 3655058928435200, 21932552593866752, 131604111656222720, 789659854309425152, 4738099863344906240, 28429162130022858752
Offset: 0

Views

Author

Vincenzo Librandi, Oct 05 2014

Keywords

Crossrefs

Cf. sequences of the form k^n - 4^n: -A000302 (k=0), -A024036 (k=1), -A020522 (k=2), -A005061 (k=3), A005060 (k=5), this sequence (k=6), A190542 (k=7), A059409 (k=8), A118004 (k=9), A248338 (k=10), A139742 (k=11), 8*A016159 (k=12).

Programs

  • Magma
    [6^n-4^n: n in [0..30]];
    
  • Mathematica
    Table[6^n - 4^n, {n,0,30}]
    CoefficientList[Series[(2 x)/((1-4 x)(1-6 x)), {x, 0, 30}], x]
    LinearRecurrence[{10,-24},{0,2},30] (* Harvey P. Dale, Aug 18 2024 *)
  • PARI
    vector(20,n,6^(n-1)-4^(n-1)) \\ Derek Orr, Oct 05 2014
    
  • SageMath
    A248337=BinaryRecurrenceSequence(10,-24,0,2)
    [A248337(n) for n in range(31)] # G. C. Greubel, Nov 11 2024

Formula

G.f.: 2*x/((1-4*x)*(1-6*x)).
a(n) = 10*a(n-1) - 24*a(n-2).
a(n) = 2^n*(3^n-2^n) = A000079(n) * A001047(n) = A000400(n) - A000302(n).
a(n) = 2*A081199(n). - Bruno Berselli, Oct 05 2014
E.g.f.: 2*exp(5*x)*sinh(x). - G. C. Greubel, Nov 11 2024

Extensions

More terms added by G. C. Greubel, Nov 11 2024

A369405 Context-free language 1^n.0^(2n).

Original entry on oeis.org

100, 110000, 111000000, 111100000000, 111110000000000, 111111000000000000, 111111100000000000000, 111111110000000000000000, 111111111000000000000000000, 111111111100000000000000000000, 111111111110000000000000000000000, 111111111111000000000000000000000000
Offset: 1

Views

Author

Vyom Narsana, Jan 22 2024

Keywords

Comments

This sequence represents the context-free language 1^n.0^(2n) which can be accepted by a pushdown automaton. It finds applications in the study of formal languages and automata theory in theoretical computer science.

Crossrefs

Programs

  • Maple
    a:= n-> convert(4^n*(2^n-1), binary):
    seq(a(n), n=1..15);  # Alois P. Heinz, Feb 04 2024
  • Mathematica
    Array[(10^#-1)*10^(2*#)/9 &, 20] (* or *)
    LinearRecurrence[{1100, -100000}, {100, 110000}, 20] (* Paolo Xausa, Feb 27 2024 *)
  • Python
    def A369405(n): return (10**n-1)//9*10**(n<<1) # Chai Wah Wu, Feb 11 2024

Formula

From Robert Israel, Jan 22 2024: (Start)
a(n) = (10^n-1)*10^(2*n)/9.
G.f.: 100*x/(100000*x^2 - 1100*x + 1). (End)
From Alois P. Heinz, Feb 04 2024: (Start)
a(n) = A007088(A059409(n)).
a(n) = 10 * A138119(n).
a(n) = 100 * A147816(n). (End)
Showing 1-3 of 3 results.