cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A100851 Triangle read by rows: T(n,k) = 2^n * 3^k, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 2, 6, 4, 12, 36, 8, 24, 72, 216, 16, 48, 144, 432, 1296, 32, 96, 288, 864, 2592, 7776, 64, 192, 576, 1728, 5184, 15552, 46656, 128, 384, 1152, 3456, 10368, 31104, 93312, 279936, 256, 768, 2304, 6912, 20736, 62208, 186624, 559872, 1679616, 512, 1536, 4608, 13824, 41472, 124416, 373248, 1119744, 3359232, 10077696
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2004

Keywords

Examples

			From _Stefano Spezia_, Apr 28 2024: (Start)
Triangle begins:
   1;
   2,  6;
   4, 12,  36;
   8, 24,  72, 216;
  16, 48, 144, 432, 1296;
  32, 96, 288, 864, 2592, 7776;
  ...
(End)
		

Crossrefs

Programs

Formula

T(n,0) = A000079(n).
T(n,1) = A007283(n) for n>0.
T(n,2) = A005010(n) for n>1.
T(n,n) = A000400(n) = A100852(n,n).
Sum_{k=0..n} T(n, k) = A016129(n).
T(2*n, n) = A001021(n). - Reinhard Zumkeller, Mar 04 2006
G.f.: 1/((1 - 2*x)*(1 - 6*x*y)). - Stefano Spezia, Apr 28 2024
From G. C. Greubel, Nov 11 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A053524(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*((1-(-1)^n)*A248337((n+1)/2) + (1 + (-1)^n)*A016149(n/2)).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1/2)*(-1)^floor(n/2)*( (1+(-1)^n) *A051958((n+2)/2) + 2*(1-(-1)^n)*A051958((n+1)/2)). (End)
Sum_{n>=0, k=0..n} 1/T(n,k) = 12/5. - Amiram Eldar, May 12 2025

A248338 a(n) = 10^n - 4^n.

Original entry on oeis.org

0, 6, 84, 936, 9744, 98976, 995904, 9983616, 99934464, 999737856, 9998951424, 99995805696, 999983222784, 9999932891136, 99999731564544, 999998926258176, 9999995705032704, 99999982820130816, 999999931280523264, 9999999725122093056, 99999998900488372224
Offset: 0

Views

Author

Vincenzo Librandi, Oct 05 2014

Keywords

Crossrefs

Cf. similar sequences listed in A248337.

Programs

  • Magma
    [10^n-4^n: n in [0..30]];
    
  • Mathematica
    Table[10^n - 4^n, {n, 0, 30}] (* or *)
    CoefficientList[Series[(6 x)/((1-4 x)(1-10 x)), {x, 0, 30}], x]
  • PARI
    vector(20,n,10^(n-1)-4^(n-1)) \\ Derek Orr, Oct 05 2014
    
  • Python
    def A248338(n): return pow(10,n) - pow(4,n)
    print([A248338(n) for n in range(41)]) # G. C. Greubel, Nov 13 2024

Formula

G.f.: 6*x/((1-4*x)*(1-10*x)).
a(n) = 14*a(n-1) - 40*a(n-2).
a(n) = 2^n*(5^n - 2^n) = A000079(n) * A005057(n) = A011557(n) - A000302(n).
a(n+1) = 6*A016157(n). [Bruno Berselli, Oct 05 2014]
E.g.f.: 2*exp(7*x)*sinh(3*x). - G. C. Greubel, Nov 13 2024
Showing 1-2 of 2 results.