cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A191466 a(n) = 9^n - 5^n.

Original entry on oeis.org

0, 4, 56, 604, 5936, 55924, 515816, 4704844, 42656096, 385467364, 3477018776, 31332231484, 282185395856, 2540645125204, 22870688939336, 205860614516524, 1852867600961216, 16676418760213444, 150090820599733496, 1350832644186663964, 12157570091625288176, 109418512294354156084
Offset: 0

Views

Author

Vincenzo Librandi, Jun 03 2011

Keywords

Crossrefs

Programs

  • Magma
    [9^n-5^n: n in [0..20]];
    
  • Mathematica
    Table[9^n - 5^n, {n, 0, 25}] (* or *) CoefficientList[Series[4 x/((1 - 5 x) (1 - 9 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 05 2014 *)
    LinearRecurrence[{14,-45},{0,4},20] (* Harvey P. Dale, Jun 26 2019 *)
  • PARI
    a(n)=9^n-5^n \\ Charles R Greathouse IV, Jun 08 2011

Formula

a(n) = 14*a(n-1) - 45*a(n-2).
From Vincenzo Librandi, Oct 05 2014: (Start)
G.f.: 4*x/((1-5*x)*(1-9*x)).
a(n+1) = 4*A016163(n). (End)
E.g.f.: 2*exp(14*x/2)*sinh(2*x). - Elmo R. Oliveira, Mar 31 2025

A191467 9^n - 7^n.

Original entry on oeis.org

0, 2, 32, 386, 4160, 42242, 413792, 3959426, 37281920, 347066882, 3204309152, 29403732866, 268588249280, 2444976817922, 22198569382112, 201143570584706, 1819787258282240, 16444551185679362, 148466221699088672, 1339452822487618946
Offset: 0

Views

Author

Vincenzo Librandi, Jun 03 2011

Keywords

Crossrefs

Programs

  • Magma
    [9^n - 7^n: n in [0..20]]:
    
  • Mathematica
    Table[9^n-7^n,{n,0,20}] (* or *) LinearRecurrence[{16,-63},{0,2},20] (* Harvey P. Dale, Jun 21 2014 *)
    CoefficientList[Series[2 x/((1 - 7 x) (1 - 9 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 05 2014 *)
  • PARI
    a(n)=9^n-7^n \\ Charles R Greathouse IV, Jun 08 2011

Formula

a(n) = 16*a(n-1) - 63*a(n-2).
G.f.: 2*x/((1-7*x)*(1-9*x)). - Vincenzo Librandi, Oct 05 2014
a(n+1) = 2*A016178(n). - Vincenzo Librandi, Oct 05 2014

A248225 a(n) = 6^n - 3^n.

Original entry on oeis.org

0, 3, 27, 189, 1215, 7533, 45927, 277749, 1673055, 10058013, 60407127, 362619909, 2176250895, 13059099693, 78359381127, 470170635669, 2821066860735, 16926530304573, 101559569247927, 609358577749029, 3656154953278575, 21936940180024653
Offset: 0

Views

Author

Vincenzo Librandi, Oct 04 2014

Keywords

Crossrefs

Cf. sequences of the form k^n-3^n: A005061 (k=4), A005058 (k=5), this sequence (k=6), A190541 (k=7), A190543 (k=8), A059410 (k=9), A248226 (k=10), A139741 (k=11).

Programs

  • Magma
    [6^n-3^n: n in [0..30]];
  • Mathematica
    Table[6^n - 3^n, {n, 0, 25}] (* or *) CoefficientList[Series[3 x / ((1 - 3 x) (1 - 6 x)), {x, 0, 30}], x]
    LinearRecurrence[{9,-18},{0,3},30] (* Harvey P. Dale, Jul 12 2025 *)

Formula

G.f.: 3*x/((1-3*x)*(1-6*x)).
a(n) = 9*a(n-1) - 18*a(n-2).
a(n) = 3^n*(2^n - 1) = A000244(n)*A000225(n).
E.g.f.: 2*exp(9*x/2)*sinh(3*x/2). - Elmo R. Oliveira, Mar 31 2025
Showing 1-3 of 3 results.