cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A160897 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 8.

Original entry on oeis.org

1, 127, 1093, 8128, 19531, 138811, 137257, 520192, 796797, 2480437, 1948717, 8883904, 5229043, 17431639, 21347383, 33292288, 25646167, 101193219, 49659541, 158747968, 150021901, 247487059, 154764793, 568569856, 305171875, 664088461, 580865013, 1115624896
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^7 such that the quotient group Z^7 / L is C_n. - Álvar Ibeas, Oct 30 2015

Crossrefs

Programs

  • Maple
    A160897 := proc(n)
        add(numtheory[mobius](n/d)*d^7,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A160897(n)) ;
    end do: # R. J. Mathar, Mar 14 2016
  • Mathematica
    A160897[n_]:=DivisorSum[n, MoebiusMu[n/# ]*#^(8 - 1)/EulerPhi[n] &] (* Enrique Pérez Herrero, Oct 27 2010 *)
    f[p_, e_] := p^(6*e - 6) * (p^7-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(30, n, sumdiv(n^6, d, if(ispower(d, 7), moebius(sqrtnint(d, 7))*sigma(n^6/d), 0))) \\ Altug Alkan, Oct 30 2015
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; f[i,1] = p^(6*f[i,2]-6)*(1+p+p^2+p^3+p^4+p^5+p^6); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_7(n)/J_1(n) = J_7(n)/phi(n) = A069092(n)/A000010(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Oct 27 2010
From Álvar Ibeas, Oct 30 2015: (Start)
Multiplicative with a(p^e) = p^(6e-6) * (p^7-1) / (p-1).
For squarefree n, a(n) = A000203(n^6). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^7, where c = (1/7) * Product_{p prime} (1 + (p^6-1)/((p-1)*p^7)) = 0.2761554804... .
Sum_{k>=1} 1/a(k) = zeta(6)*zeta(7) * Product_{p prime} (1 - 2/p^7 + 1/p^13) = 1.008982290854... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^7). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 27 2010

A160891 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 5.

Original entry on oeis.org

1, 15, 40, 120, 156, 600, 400, 960, 1080, 2340, 1464, 4800, 2380, 6000, 6240, 7680, 5220, 16200, 7240, 18720, 16000, 21960, 12720, 38400, 19500, 35700, 29160, 48000, 25260, 93600, 30784, 61440, 58560, 78300, 62400, 129600, 52060, 108600, 95200
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^4 such that the quotient group Z^4 / L is C_nm x (C_m)^3 (and also (C_nm)^3 x C_m), for every m>=1. - Álvar Ibeas, Oct 30 2015

Examples

			There are 1395 = A160870(8,4) lattices of volume 8 in Z^4. Among them, a(8) = 960 give the quotient group C_8 and a(2) = 15 give C_2 x C_2 x C_2.
Among the lattices of volume 64 in Z^4, there are a(4) = 120 such that the quotient group is C_4 x C_4 x C_4 and other 120 with quotient group C_8 x (C_2)^3.
		

Crossrefs

Column 4 of A263950.

Programs

  • Maple
    A160891 := proc(n) a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; a := a*p^(3*e-3)*(1+p+p^2+p^3) ; end do; a; end proc:
    seq(A160891(n),n=1..20) ; # R. J. Mathar, Jul 10 2011
  • Mathematica
    A160891[n_]:=DivisorSum[n,MoebiusMu[n/#]*#^(5-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 19 2010 *)
    f[p_, e_] := p^(3 e - 3)*(1 + p + p^2 + p^3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(50, n, sumdiv(n^3, d, if(ispower(d, 4), moebius(sqrtnint(d, 4))*sigma(n^3/d), 0))) \\ Altug Alkan, Oct 30 2014
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; f[i,1] = p^(3*f[i,2]-3)*(1+p+p^2+p^3); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_4(n)/J_1(n) = J_4(n)/phi(n) = A059377(n)/A000010(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Oct 19 2010
Multiplicative with a(p^e) = p^(3e-3)*(1+p+p^2+p^3). - R. J. Mathar, Jul 10 2011
For squarefree n, a(n) = A000203(n^3). - Álvar Ibeas, Oct 30 2015
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^3/((p^3-1)*(p^3+p^2+p+1))) = 1.115923965261131974852254388404911045036763705978837384729819264463715993... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (1/4) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.4629765396... . - Amiram Eldar, Nov 08 2022
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^4). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Aug 22 2010

A160893 a(n) = Sum_{d|n} Möbius(n/d)*d^5/phi(n).

Original entry on oeis.org

1, 31, 121, 496, 781, 3751, 2801, 7936, 9801, 24211, 16105, 60016, 30941, 86831, 94501, 126976, 88741, 303831, 137561, 387376, 338921, 499255, 292561, 960256, 488125, 959171, 793881, 1389296, 732541, 2929531, 954305, 2031616, 1948705
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^5 such that the quotient group Z^5 / L is C_nm x (C_m)^4 (and also (C_nm)^4 x C_m), for every m>=1. - Álvar Ibeas, Oct 30 2015

Crossrefs

Programs

  • Maple
    A160893 := proc(n) a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; a := a*p^(4*e-4)*(1+p+p^2+p^3+p^4) ; end do; a; end proc: # R. J. Mathar, Jul 10 2011
  • Mathematica
    A160893[n_]:=DivisorSum[n,MoebiusMu[n/# ]*#^(6-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 19 2010 *)
    f[p_, e_] := p^(4*e - 4)*(1 + p + p^2 + p^3 + p^4); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^5/eulerphi(n)); \\ Michel Marcus, Feb 15 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^5 - 1)*f[i, 1]^(4*f[i, 2] - 4)/(f[i, 1] - 1)); } \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_5(n)/J_1(n) = J_5(n)/phi(n) = A059378(n)/A000010(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Oct 19 2010
Multiplicative with a(p^e) = p^(4e-4)*(1 + p+ p^2 + p^3 + p^4). - R. J. Mathar, Jul 10 2011
For squarefree n, a(n) = A000203(n^4). - Álvar Ibeas, Oct 30 2015
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^5, where c = (1/5) * Product_{p prime} (1 + (p^4-1)/((p-1)*p^5)) = 0.3799167034... .
Sum_{k>=1} 1/a(k) = zeta(4)*zeta(5) * Product_{p prime} (1 - 2/p^5 + 1/p^9) = 1.0449010968... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^5). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 19 2010

A160895 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 7.

Original entry on oeis.org

1, 63, 364, 2016, 3906, 22932, 19608, 64512, 88452, 246078, 177156, 733824, 402234, 1235304, 1421784, 2064384, 1508598, 5572476, 2613660, 7874496, 7137312, 11160828, 6728904, 23482368, 12206250, 25340742, 21493836, 39529728, 21243690, 89572392
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^6 such that the quotient group Z^6 / L is C_nm x (C_m)^5 (and also (C_nm)^5 x C_m), for every m>=1. - Álvar Ibeas, Oct 30 2015

Crossrefs

Programs

  • Maple
    A160895 := proc(n) a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; a := a*p^(5*e-5)*(1+p+p^2+p^3+p^4+p^5) ; end do; a; end proc: # R. J. Mathar, Jul 10 2011
  • Mathematica
    A160895[n_]:=DivisorSum[n,MoebiusMu[n/# ]*#^(7-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 20 2010 *)
    f[p_, e_] := p^(5*e - 5) * (p^6-1) / (p-1); ; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(50, n, sumdiv(n^5, d, if(ispower(d, 6), moebius(sqrtnint(d, 6))*sigma(n^5/d), 0))) \\ Altug Alkan, Oct 30 2014
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; f[i,1] = p^(5*f[i,2]-5)*(1+p+p^2+p^3+p^4+p^5); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_6(n)/J_1(n)=J_6(n)/phi(n)=A069091(n)/A000010(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Oct 20 2010
Multiplicative with a(p^e) = p^(5e-5)*(1+p+p^2+p^3+p^4+p^5). - R. J. Mathar, Jul 10 2011
For squarefree n, a(n) = A000203(n^5). - Álvar Ibeas, Oct 30 2015
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^6, where c = (1/6) * Product_{p prime} (1 + (p^5-1)/((p-1)*p^6)) = 0.3203646372... .
Sum_{k>=1} 1/a(k) = zeta(5)*zeta(6) * Product_{p prime} (1 - 2/p^6 + 1/p^11) = 1.0195114923... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^6). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 20 2010

A161213 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 18.

Original entry on oeis.org

1, 131071, 64570081, 8589869056, 190734863281, 8463265086751, 38771752331201, 562945658454016, 2779530261754401, 24999809265103951, 50544702849929377, 554648540725313536, 720867993281778161, 5081852349802846271, 12315765571578095761, 36893206672442392576
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^17 such that the quotient group Z^17 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 17 of A263950.

Programs

  • Maple
    A161213 := proc(n)
        add(numtheory[mobius](n/d)*d^17,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A161213(n)) ;
    end do: # R. J. Mathar, Mar 15 2016
  • Mathematica
    A161213[n_]:=DivisorSum[n,MoebiusMu[n/#]*#^(18-1)/EulerPhi[n]&]; Array[A161213,20]
    f[p_, e_] := p^(16*e - 16) * (p^17-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    A161213(n)=sumdiv(n,d,moebius(n/d)*d^17)/eulerphi(n);
    
  • PARI
    vector(100, n, sumdiv(n^16, d, if(ispower(d, 17), moebius(sqrtnint(d, 16))*sigma(n^16/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^17 - 1)*f[i,1]^(16*f[i,2] - 16)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_17(n)/A000010(n), where J_17 is the 17th Jordan totient function.
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(16e-16) * (p^17-1) / (p-1).
For squarefree n, a(n) = A000203(n^16). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^17, where c = (1/17) * Product_{p prime} (1 + (p^16-1)/((p-1)*p^17)) = 0.1143286202... .
Sum_{k>=1} 1/a(k) = zeta(16)*zeta(17) * Product_{p prime} (1 - 2/p^17 + 1/p^33) = 1.000007645061593... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^17). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A160908 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 9.

Original entry on oeis.org

1, 255, 3280, 32640, 97656, 836400, 960800, 4177920, 7173360, 24902280, 21435888, 107059200, 67977560, 245004000, 320311680, 534773760, 435984840, 1829206800, 943531280, 3187491840, 3151424000, 5466151440, 3559590240, 13703577600, 7629375000, 17334277800
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^8 such that the quotient group Z^8 / L is C_n. - Álvar Ibeas, Oct 30 2015

Crossrefs

Programs

  • Mathematica
    A160908[n_]:=DivisorSum[n,MoebiusMu[n/# ]*#^(9-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 28 2010 *)
    f[p_, e_] := p^(7*e - 7) * (p^8-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(30, n, sumdiv(n^7, d, if(ispower(d, 8), moebius(sqrtnint(d, 8))*sigma(n^7/d), 0))) \\ Altug Alkan, Oct 30 2015
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i,1]; f[i,1] = p^(7*f[i,2]-7)*(p^8-1)/(p-1); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_8(n)/J_1(n) = J_8(n)/phi(n) = A069093(n)/A000010(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Oct 28 2010
From Álvar Ibeas, Oct 30 2015: (Start)
Multiplicative with a(p^e) = p^(7e-7) * (p^8-1) / (p-1).
For squarefree n, a(n) = A000203(n^7). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^8, where c = (1/8) * Product_{p prime} (1 + (p^7-1)/((p-1)*p^8)) = 0.2423008904... .
Sum_{k>=1} 1/a(k) = zeta(7)*zeta(8) * Product_{p prime} (1 - 2/p^8 + 1/p^15) = 1.004270064601... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^8). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 28 2010

A160953 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 10.

Original entry on oeis.org

1, 511, 9841, 130816, 488281, 5028751, 6725601, 33488896, 64566801, 249511591, 235794769, 1287360256, 883708281, 3436782111, 4805173321, 8573157376, 7411742281, 32993635311, 17927094321, 63874967296, 66186639441, 120491126959, 81870575521, 329564225536
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^9 such that the quotient group Z^9 / L is C_n. - Álvar Ibeas, Nov 03 2015

Crossrefs

Programs

  • Maple
    A160953 := proc(n)
        add(numtheory[mobius](n/d)*d^9,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A160953(n)) ;
    end do: # R. J. Mathar, Mar 14 2016
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];
    A160953[n_]:=JordanTotient[n,9]/JordanTotient[n];
    f[p_, e_] := p^(8*e - 8) * (p^9-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^8, d, if(ispower(d, 9), moebius(sqrtnint(d, 9))*sigma(n^8/d), 0))) \\ Altug Alkan, Nov 05 2015
    
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, p = f[i,1]; f[i,1] = p^(8*f[i,2]-8)*(p^9-1)/(p-1); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 12 2015

Formula

a(n) = J_9(n)/phi(n) = A069094(n)/A000010(n).
From Álvar Ibeas, Nov 03 2015: (Start)
Multiplicative with a(p^e) = p^(8e-8) * (p^9-1) / (p-1).
For squarefree n, a(n) = A000203(n^8). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^9, where c = (1/9) * Product_{p prime} (1 + (p^8-1)/((p-1)*p^9)) = 0.2156692448... .
Sum_{k>=1} 1/a(k) = zeta(8)*zeta(9) * Product_{p prime} (1 - 2/p^9 + 1/p^17) = 1.002068659133... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^9). - Ridouane Oudra, Apr 01 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A160957 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 11.

Original entry on oeis.org

1, 1023, 29524, 523776, 2441406, 30203052, 47079208, 268173312, 581120892, 2497558338, 2593742460, 15463962624, 11488207654, 48162029784, 72080070744, 137304735744, 125999618778, 594486672516, 340614792100, 1278749869056
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^10 such that the quotient group Z^10 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 10 of A263950.

Programs

  • Mathematica
    b = 11; Table[Sum[MoebiusMu[n/d] d^(b - 1)/EulerPhi@ n, {d, Divisors@ n}], {n, 20}] (* Michael De Vlieger, Nov 27 2015 *)
    f[p_, e_] := p^(9*e - 9) * (p^10-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^9, d, if(ispower(d, 10), moebius(sqrtnint(d, 10))*sigma(n^9/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^10 - 1)*f[i,1]^(9*f[i,2] - 9)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = A069095(n)/A000010(n). - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(9e-9) * (p^10-1) / (p-1).
For squarefree n, a(n) = A000203(n^9). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^10, where c = (1/10) * Product_{p prime} (1 + (p^9-1)/((p-1)*p^10)) = 0.1942316928... .
Sum_{k>=1} 1/a(k) = zeta(9)*zeta(10) * Product_{p prime} (1 - 2/p^10 + 1/p^19) = 1.0010137674... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^10). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A160960 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 12.

Original entry on oeis.org

1, 2047, 88573, 2096128, 12207031, 181308931, 329554457, 2146435072, 5230147077, 24987792457, 28531167061, 185660345344, 149346699503, 674597973479, 1081213356763, 2197949513728, 2141993519227, 10706111066619, 6471681049901, 25587499475968, 29189626919861, 58403298973867
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^11 such that the quotient group Z^11 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 11 of A263950.

Programs

  • Mathematica
    b = 12; Table[Sum[MoebiusMu[n/d] d^(b - 1)/EulerPhi@ n, {d, Divisors@ n}], {n, 18}] (* Michael De Vlieger, Nov 27 2015 *)
    f[p_, e_] := p^(10*e - 10) * (p^11-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^10, d, if(ispower(d, 11), moebius(sqrtnint(d, 11))*sigma(n^10/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^11 - 1)*f[i,1]^(10*f[i,2] - 10)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_11(n)/J_1(n) where J_11 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(10e-10) * (p^11-1) / (p-1).
For squarefree n, a(n) = A000203(n^10). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^11, where c = (1/11) * Product_{p prime} (1 + (p^10-1)/((p-1)*p^11)) = 0.1766326404... .
Sum_{k>=1} 1/a(k) = zeta(10)*zeta(11) * Product_{p prime} (1 - 2/p^11 + 1/p^21) = 1.0005003781952... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^11). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A160972 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 13.

Original entry on oeis.org

1, 4095, 265720, 8386560, 61035156, 1088123400, 2306881200, 17175674880, 47071500840, 249938963820, 313842837672, 2228476723200, 1941507093540, 9446678514000, 16218261652320, 35175782154240, 36413889826860, 192757795939800, 122961939948120, 511874997903360, 612984472464000
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^12 such that the quotient group Z^12 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 12 of A263950.

Programs

  • Mathematica
    b = 13; Table[Sum[MoebiusMu[n/d] d^(b - 1)/EulerPhi@ n, {d, Divisors@ n}], {n, 17}] (* Michael De Vlieger, Nov 27 2015 *)
    f[p_, e_] := p^(11*e - 11) * (p^12-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^11, d, if(ispower(d, 12), moebius(sqrtnint(d, 12))*sigma(n^11/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^12 - 1)*f[i,1]^(11*f[i,2] - 11)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_12(n)/J_1(n) where J_12 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(11e-11) * (p^12-1) / (p-1).
For squarefree n, a(n) = A000203(n^11). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^12, where c = (1/12) * Product_{p prime} (1 + (p^11-1)/((p-1)*p^12)) = 0.1619398772... .
Sum_{k>=1} 1/a(k) = zeta(11)*zeta(12) * Product_{p prime} (1 - 2/p^12 + 1/p^23) = 1.0002481006668... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^12). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010
Showing 1-10 of 15 results. Next