cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A263950 Array read by antidiagonals: T(n,k) is the number of lattices L in Z^k such that the quotient group Z^k / L is C_n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 6, 13, 15, 1, 1, 6, 28, 40, 31, 1, 1, 12, 31, 120, 121, 63, 1, 1, 8, 91, 156, 496, 364, 127, 1, 1, 12, 57, 600, 781, 2016, 1093, 255, 1, 1, 12, 112, 400, 3751, 3906, 8128, 3280, 511, 1, 1, 18, 117, 960, 2801, 22932, 19531, 32640
Offset: 1

Views

Author

Álvar Ibeas, Oct 30 2015

Keywords

Comments

All the enumerated lattices have full rank k, since the quotient group is finite.
For m>=1, T(n,k) is the number of lattices L in Z^k such that the quotient group Z^k / L is C_nm x (C_m)^(k-1); and also, (C_nm)^(k-1) x C_m.
Also, number of subgroups of (C_n)^k isomorphic to C_n (and also, to (C_n)^{k-1}), cf. [Butler, Lemma 1.4.1].
T(n,k) is the sum of the divisors d of n^(k-1) such that n^(k-1)/d is k-free. Namely, the coefficient in n^(-(k-1)*s) of the Dirichlet series zeta(s) * zeta(s-1) / zeta(ks).
Also, number of isomorphism classes of connected (C_n)-fold coverings of a connected graph with circuit rank k.
Columns are multiplicative functions.

Examples

			There are 7 = A160870(4,2) lattices of volume 4 in Z^2. Among them, only one (<(2,0), (0,2)>) gives the quotient group C_2 x C_2, whereas the rest give C_4. Hence, T(4,2) = 6 and T(1,2) = 1.
Array begins:
      k=1    k=2    k=3    k=4    k=5    k=6
n=1     1      1      1      1      1      1
n=2     1      3      7     15     31     63
n=3     1      4     13     40    121    364
n=4     1      6     28    120    496   2016
n=5     1      6     31    156    781   3906
n=6     1     12     91    600   3751  22932
		

References

  • Lynne M. Butler, Subgroup lattices and symmetric functions. Mem. Amer. Math. Soc., Vol. 112, No. 539, 1994.

Crossrefs

Programs

  • Mathematica
    f[p_, e_, k_] := p^((k - 1)*(e - 1))*(p^k - 1)/(p - 1); T[n_, 1] = T[1, k_] = 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 08 2022 *)

Formula

T(n,k) = J_k(n) / J_1(n) = (Sum_{d|n} mu(n/d) * d^k) / phi(n).
T(n,k) = n^(k-1) * Product_{p|n, p prime} (p^k - 1) / ((p - 1) * p^(k-1)).
Dirichlet g.f. of k-th column: zeta(s-k+1) * Product_{p prime} (1 + p^(-s) + p^(1-s) + ... + p^(k-2-s)).
If n is squarefree, T(n,k) = A160870(n,k) = A000203(n^(k-1)).
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{i=1..n} T(i, k) ~ c * n^k, where c = (1/k) * Product_{p prime} (1 + (p^(k-1)-1)/((p-1)*p^k)).
Sum_{i>=1} 1/T(i, k) = zeta(k-1)*zeta(k) * Product_{p prime} (1 - 2/p^k + 1/p^(2*k-1)), for k > 2. (End)
T(n,k) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^k). - Ridouane Oudra, Apr 03 2025

A344219 Number of cyclic subgroups of the group (C_n)^5, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 32, 122, 528, 782, 3904, 2802, 8464, 9923, 25024, 16106, 64416, 30942, 89664, 95404, 135440, 88742, 317536, 137562, 412896, 341844, 515392, 292562, 1032608, 488907, 990144, 803804, 1479456, 732542, 3052928, 954306, 2167056, 1964932, 2839744, 2191164, 5239344, 1926222
Offset: 1

Views

Author

Seiichi Manyama, May 12 2021

Keywords

Comments

Inverse Moebius transform of A160893.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^5 - 1)/(p - 1))*((p^(4*e) - 1)/(p^4 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, sumdiv(n, l, sumdiv(n, m, eulerphi(i)*eulerphi(j)*eulerphi(k)*eulerphi(l)*eulerphi(m)/eulerphi(lcm([i, j, k, l, m])))))));
    
  • PARI
    a160893(n) = sumdiv(n, d, moebius(n/d)*d^5)/eulerphi(n);
    a(n) = sumdiv(n, d, a160893(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, x_3|n, x_4|n, x_5|n} phi(x_1)*phi(x_2)*phi(x_3)*phi(x_4)*phi(x_5)/phi(lcm(x_1, x_2, x_3, x_4, x_5)).
If p is prime, a(p) = 1 + (p^5 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^5 - 1)/(p - 1))*((p^(4*e) - 1)/(p^4 - 1)).
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4 + 1/p^5) = 0.3939461744... . (End)

A220555 T(n,k) = maximal order N of cyclic group {D,D^2,...,D^N} generated by an n X n Danzer matrix D over Z/kZ, where D is from the m-th Danzer basis and m=2*n+1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 8, 1, 1, 7, 26, 6, 1, 1, 31, 18, 14, 20, 1, 1, 63, 121, 14, 62, 24, 1, 1, 15, 26, 62, 62, 182, 16, 1, 1, 15, 24, 126, 781, 126, 42, 12, 1, 1, 511, 1640, 30, 24, 3751, 114, 28, 24, 1, 1, 63, 9841, 30, 20, 1638, 2801, 28, 78, 60, 1
Offset: 1

Views

Author

L. Edson Jeffery, Dec 15 2012

Keywords

Comments

For definition of Danzer matrix see [Jeffery] (notation differs there!).
Conjecture 1. Let F_n(x)=sum_{j=0..n} A187660(n,j)*x^{(n-1)*j}. Let f_n in Z[x] be any polynomial in x of degree d such that 0<=d<=(n-1)*(n-2). Then the sequence of coefficients of the series expansion of f_n(x)/F_n(x), when taken over Z/kZ, is periodic with period p <= (n-1)*A220555(n,k), for all n,k > 1. (Cf. [Coleman, et al.] for the case for n=2 (generalized Fibonacci).)
Conjecture 2. If G a cyclic multiplicative group generated by an n X n integer matrix over Z/kZ, then |G|<=T(r,k), for some r<=n.
Definition. If T(n,k)>=(k^n-1)/(k-1), for some k>1, then T(n,k) is said to be "optimal."
Conjecture 3. If T(n,k) is optimal, then n is a Queneau number (A054639).
Sequence is read from antidiagonals of array T which begins as
.1...1....1....1......1.......1......1....1.....1.........1
.1...3....8....6.....20......24.....16...12....24........60
.1...7...26...14.....62.....182.....42...28....78.......434
.1...7...18...14.....62.....126....114...28....54.......434
.1..31..121...62....781....3751...2801..124...363.....24211
.1..63...26..126.....24....1638..13072..252....78.......504
.1..15...24...30.....20.....120....400...60....72........60
.1..15.1640...30..32552....4920.240200...60..4920....488280
.1.511.9841.1022.488281.5028751....342.2044.29523.249511591
.1..63...78..126....124....1638.....42..252...234......7812
Rows might be related to Jordan totient functions J_n(k), however, some entries T(n,k) are products of factors of the form (j^n-1)/(j-1).

Crossrefs

Cf. A001175 (possibly = row 2), A086839 (possibly = column 2), A160893, A160895, A160897, A160960, A160972, A161010, A161025, A161139, A161167, A161213.
Cf. A187772 (gives maximal periods p of Conjecture 1).

A160896 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 6.

Original entry on oeis.org

63, 1953, 7623, 31248, 49203, 236313, 176463, 499968, 617463, 1525293, 1014615, 3781008, 1949283, 5470353, 5953563, 7999488, 5590683, 19141353, 8666343, 24404688, 21352023, 31453065, 18431343, 60496128, 30751875, 60427773, 50014503, 87525648, 46150083, 184560453
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(4*e - 4)*(1 + p + p^2 + p^3 + p^4); a[1] = 63; a[n_] := 63 * Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 63 * prod(i = 1, #f~, (f[i,1]^4 + f[i,1]^3 + f[i,1]^2 + f[i,1] + 1)*f[i,1]^(4*f[i,2] - 4));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = 63*A160893(n). - R. J. Mathar, Mar 16 2016
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^5, where c = (63/5) * Product_{p prime} (1 + (p^4-1)/((p-1)*p^5)) = 23.9347523175... .
Sum_{k>=1} 1/a(k) = (zeta(4)*zeta(5)/63) * Product_{p prime} (1 - 2/p^5 + 1/p^9) = 0.01658573169... . (End)
Showing 1-4 of 4 results.