A187772
T(n,k) = (n-1)*A220555(n,k), n,k = 2,3,....
Original entry on oeis.org
3, 14, 8, 21, 52, 6, 124, 54, 28, 20, 315, 484, 42, 124, 24, 90, 130, 248, 186, 364, 16, 105, 144, 630, 3124, 378, 84, 12, 4088, 11480, 180, 120, 15004, 342, 56, 24, 567, 78728, 210, 120, 8190, 11204, 84, 156, 60
Offset: 2
Array begins as
....3.....8.....6......20.......24......16....12.....24.........60
...14....52....28.....124......364......84....56....156........868
...21....54....42.....186......378.....342....84....162.......1302
..124...484...248....3124....15004...11204...496...1452......96844
..315...130...630.....120.....8190...65360..1260....390.......2520
...90...144...180.....120......720....2400...360....432........360
..105.11480...210..227864....34440.1681400...420..34440....3417960
.4088.78728..8176.3906248.40230008....2736.16352.236184.1996092728
..567...702..1134....1116....14742.....378..2268...2106......70308
A306334
a(n) is the number of different linear hydrocarbon molecules with n carbon atoms.
Original entry on oeis.org
1, 3, 4, 10, 18, 42, 84, 192, 409, 926, 2030, 4577, 10171, 22889, 51176, 115070, 257987, 579868, 1301664, 2925209, 6569992, 14763529, 33166848, 74527233, 167446566, 376253517, 845401158, 1899609267, 4268309531, 9590827171, 21550227328, 48422972296, 108805058758
Offset: 1
For n=1, there is one possibility: CH4.
For n=2, there are 3 solutions: CHCH, CH3CH3, CH2CH2.
For n=3, there are 4 solutions: CHCCH3, CH2CCH2, CH3CHCH2, CH3CH2CH3.
For n=6, there are 42 solutions: CH3CH2CHCHCCH, CH3CH2CHCHCH2CH3, CH2CHCCCHCH2, CH2CHCHCHCH2CH3, CH2CHCHCHCCH, CH2CCCCHCH3, CHCCCCHCH2, CH3CHCHCHCHCH3, CHCCHCHCCH, CH2CCCCCH2, CH3CCCH2CH2CH3, CH3CCCCCH3, CH3CH2CH2CH2CH2CH3, CH2CHCHCHCHCH2, CH2CCHCH2CHCH2, CH3CHCCCHCH3, CHCCH2CH2CH2CH3, CHCCH2CH2CCH, CH3CCCH2CHCH2, CH2CCCHCH2CH3, CH2CCCHCCH, CHCCH2CCCH3, CHCCH2CHCCH2, CH3CH2CH2CH2CHCH2, CH2CHCHCCHCH3, CH3CH2CCCH2CH3, CH2CHCH2CH2CHCH2, CH2CHCHCCCH2, CH3CHCCHCH2CH3, CH3CH2CH2CHCHCH3, CH3CHCCHCCH, CHCCH2CH2CHCH2, CH3CHCHCCCH3, CH2CCHCCCH3, CH3CHCHCHCCH2, CHCCCCH2CH3, CH2CHCH2CHCHCH3, CH2CCHCHCCH2, CHCCCCCH, CH2CCHCH2CH2CH3, CH3CH2CCCHCH2, CHCCH2CHCHCH3.
- Vincent Champain, Table of n, a(n) for n = 1..1000
- L. Edson Jeffery, Danzer matrices (unit-primitive matrices). [It contains a discussion of a generalization of the matrix M that appears in the formula for a(n). See basis D_7.]
- Wikipedia, Cayley-Hamilton theorem.
- R. Witula, D. Slota, and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq. 9 (2006), Article 06.4.3. [See Corollary 2.4 and the discussion about the polynomial p_7(x) and its roots. This essentially proves that a(n) can be expressed in terms of exp(I*2*Pi/7).]
- Index entries for linear recurrences with constant coefficients, signature (2,3,-5,-1,0,-2,3,1,-1).
-
with(LinearAlgebra):
M := Matrix([[0, 0, 1], [0, 1, 1], [1, 1, 1]]):
X := proc(n) MatrixPower(M, n - 2): end proc:
Y := proc(n) MatrixPower(M, floor(1/2*n) - 2): end proc:
a := proc(n) `if`(n < 4, [1,3,4][n], 1/2*(add(add(X(n)[i, j], i = 1..3), j = 1..3) + add(add(Y(n)[i, j]*min(j, 3 - (n mod 2)), i = 1..3), j = 1..3))):
end proc:
seq(a(n), n=1..40); # Petros Hadjicostas, Nov 17 2019
-
M = {{0, 0, 1}, {0, 1, 1}, {1, 1, 1}};
X[n_] := MatrixPower[M, n - 2];
Y[n_] := MatrixPower[M, Floor[1/2*n] - 2];
a[n_] := If[n < 4, {1, 3, 4}[[n]], 1/2*(Sum[Sum[X[n][[i, j]], {i, 1, 3}], {j, 1, 3}] + Sum[Sum[Y[n][[i, j]]*Min[j, 3 - Mod[n, 2]], {i, 1, 3}], {j, 1, 3}])];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 16 2023, after Petros Hadjicostas *)
-
from numpy import array as npa
from numpy.linalg import matrix_power as npow
def F(n):
if n<4: return([0,1,3,4][n])
m=npa([[0,0,1],[0,1,1],[1,1,1]],dtype=object)
m2=npow(m,n//2-2)
return((sum(sum(npow(m,n-2)))+sum(sum(m2[j]*min(j+1,3-(n&1)) for j in range(3))))//2)
A062882
a(n) = (1 - 2*cos(Pi/9))^n + (1 + 2*cos(Pi*2/9))^n + (1 + 2*cos(Pi*4/9))^n.
Original entry on oeis.org
3, 9, 18, 45, 108, 270, 675, 1701, 4293, 10854, 27459, 69498, 175932, 445419, 1127763, 2855493, 7230222, 18307377, 46355652, 117376290, 297206739, 752553261, 1905530913, 4824972522, 12217257783, 30935180610, 78330624264
Offset: 1
We have a(2)=3*a(1), a(4)/a(3) = a(6)/a(5) = a(7)/a(6) = 5/2, a(6)=6*a(4), a(7)=15*a(4), and (1 + c(1))^8 + (1 + c(2))^8 + (1 + c(4))^8 = 7*3^5. - _Roman Witula_, Sep 29 2012
-
Digits := 1000:q := seq(floor(evalf((1-2*cos(1/9*Pi))^n+(1+2*cos(2/9*Pi))^n+(1+2*cos(4/9*Pi))^n)),n=1..50);
-
LinearRecurrence[{3,0,-3},{3,9,18},25] (* Georg Fischer Feb 02 2019 *)
-
{ default(realprecision, 200); for (n=1, 200, a=(1 - 2*cos(1/9*Pi))^n + (1 + 2*cos(2/9*Pi))^n + (1 + 2*cos(4/9*Pi))^n; write("b062882.txt", n, " ", round(a)) ) } \\ Harry J. Smith, Aug 12 2009
-
Vec((3-9*x^2)/(1-3*x+3*x^3)+O(x^66)) /* Joerg Arndt, Apr 08 2011 */
Adapted formula, denominator of g.f. and modified g.f. (and offset) to accommodate added initial term a(0)=4. -
L. Edson Jeffery, Apr 05 2011
a(0) = 4 removed, g.f. and programs adapted by
Georg Fischer, Feb 02 2019
A210456
Period of the sequence of the digital roots of Fibonacci n-step numbers.
Original entry on oeis.org
1, 24, 39, 78, 312, 2184, 1092, 240, 273, 26232, 11553, 9840, 177144, 14348904, 21523359, 10315734, 48417720, 16120104, 15706236, 5036466318, 258149112, 1162261464, 141214768239, 421900912158, 8857200, 2184, 2271, 28578504864, 21938847432216, 148698308091840
Offset: 1
Digital roots of Fibonacci numbers (A030132) are 0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9, 1, 1, 2, 3,... Thus the period is 24 (1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9).
Cf. Fibonacci numbers, k-th order sequences,
A000045 (Fibonacci numbers, k=2),
A030132 (digital root, k=2),
A001175 (Pisano periods, k=2),
A000073 (tribonacci numbers, k=3),
A222407 (digital roots, k=3),
A046738 (Pisano periods, k=3),
A029898 (Pitoun's sequence),
A187772,
A220555.
-
A210456:=proc(q,i)
local d,k,n,v;
v:=array(1..q);
for d from 1 to i do
for n from 1 to d do v[n]:=0; od; v[d+1]:=1;
for n from d+2 to q do v[n]:=1+((add(v[k],k=n-d-1..n-1)-1) mod 9);
if add(v[k],k=n-d+1..n)=9*d and v[n-d]=1 then print(n-d); break;
fi; od; od; end:
A210456 (100000000,100);
-
f[n_] := f[n] = Block[{s = PadLeft[{1}, n], c = 1}, s = t = Nest[g, s, n]; While[t = g[t]; s != t, c++]; c]; g[lst_List] := Rest@Append[lst, 1 + Mod[-1 + Plus @@ lst, 9]]; Do[ Print[{n, f[n] // Timing}], {n, 100}]
Showing 1-4 of 4 results.
Comments