cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A062883 (1-2*cos(1/11*Pi))^n+(1+2*cos(2/11*Pi))^n+(1-2*cos(3/11*Pi))^n+(1+2*cos(4/11*Pi))^n+(1-2*cos(5/11*Pi))^n.

Original entry on oeis.org

4, 12, 25, 64, 159, 411, 1068, 2808, 7423, 19717, 52529, 140251, 375015, 1003770, 2688570, 7204696, 19313075, 51782613, 138861732, 372414289, 998851473, 2679146955, 7186319506, 19276417059, 51707411684, 138702360471
Offset: 1

Views

Author

Vladeta Jovovic, Jun 27 2001

Keywords

Comments

From L. Edson Jeffery, Apr 20 2011: (Start)
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(11,2) =
(0 0 1 0 0)
(0 1 0 1 0)
(1 0 1 0 1)
(0 1 0 1 1)
(0 0 1 1 1).
Then a(n) = Trace(U^(n+1)). Evidently this is one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix U_(N,r) (0 < r < floor(N/2)) and for which the closed-form expression for a(n) is derived from the eigenvalues of U_(N,r). (End)
a(n) = A(n;1), where A(n;d), d in C, is the sequence of polynomials defined in Witula's comments to A189235 (see also Witula-Slota's paper for compatible sequences). - Roman Witula, Jul 26 2012

References

  • R. Witula, D. Slota, Quasi-Fibonacci Numbers of Order 11, 10 (2007), Article 07.8.5.

Crossrefs

Programs

  • Maple
    Digits := 1000:q := seq(floor(evalf((1-2*cos(1/11*Pi))^n+(1+2*cos(2/11*Pi))^n+(1-2*cos(3/11*Pi))^n+(1+2*cos(4/11*Pi))^n+(1-2*cos(5/11*Pi))^n)),n=1..50);
  • Mathematica
    a[n_] := (1 - 2*Cos[Pi/11])^n + (2*Cos[(2*Pi)/11] + 1)^n + (1 - 2*Sin[Pi/22])^n + (2*Sin[(3*Pi)/22] + 1)^n + (1 - 2*Sin[(5*Pi)/22])^n; Table[a[n] // FullSimplify, {n, 1, 26}] (* Jean-François Alcover, Mar 26 2013 *)
    u = {{0, 0, 1, 0, 0}, {0, 1, 0, 1, 0}, {1, 0, 1, 0, 1}, {0, 1, 0, 1, 1}, {0, 0, 1, 1, 1}}; a[n_] := Tr[MatrixPower[u, n]]; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 16 2013, after L. Edson Jeffery *)
    LinearRecurrence[{4,-2,-5,2,1},{4,12,25,64,159},30] (* Harvey P. Dale, Dec 30 2024 *)
  • PARI
    { default(realprecision, 200); for (n=1, 200, a=(1 - 2*cos(1/11*Pi))^n + (1 + 2*cos(2/11*Pi))^n + (1 - 2*cos(3/11*Pi))^n + (1 + 2*cos(4/11*Pi))^n + (1 - 2*cos(5/11*Pi))^n; write("b062883.txt", n, " ", round(a)) ) } \\ Harry J. Smith, Aug 12 2009

Formula

G.f.: x*(4-4*x-15*x^2+8*x^3+5*x^4)/(1-4*x+2*x^2+5*x^3-2*x^4-x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
-A062883 = series expansion of (5-8*x-15*x^2+4*x^3+4*x^4)/(1-2*x-5*x^2+2*x^3+4*x^4+x^5) at x=infinity. (See also A189236.) - L. Edson Jeffery, Apr 20 2011
Also, a(n) = Sum_{k = 1..5} ((w_k)^2-1)^(n+1), w_k = 2*(-1)^(k-1)*cos(k*Pi/11), in which the polynomials {(w_k)^2-1} give the spectrum of the matrix U_(11,2) above. - L. Edson Jeffery, Apr 20 2011

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009
More terms from Sascha Kurz, Mar 24 2002
Showing 1-1 of 1 results.