A006054
a(n) = 2*a(n-1) + a(n-2) - a(n-3), with a(0) = a(1) = 0, a(2) = 1.
Original entry on oeis.org
0, 0, 1, 2, 5, 11, 25, 56, 126, 283, 636, 1429, 3211, 7215, 16212, 36428, 81853, 183922, 413269, 928607, 2086561, 4688460, 10534874, 23671647, 53189708, 119516189, 268550439, 603427359, 1355888968, 3046654856, 6845771321, 15382308530, 34563733525
Offset: 0
G.f. = x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 56*x^7 + 126*x^8 + 283*x^9 + ... - _Michael Somos_, Jun 25 2018
- Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..150
- C. P. de Andrade, J. P. de Oliveira Santos, E. V. P. da Silva and K. C. P. Silva, Polynomial Generalizations and Combinatorial Interpretations for Sequences Including the Fibonacci and Pell Numbers, Open Journal of Discrete Mathematics, 2013, 3, 25-32 doi:10.4236/ojdm.2013.31006. - From _N. J. A. Sloane_, Feb 20 2013
- Maximilian Fichtner, K. Voigt, and S. Schuster, The tip and hidden part of the iceberg: Proteinogenic and non-proteinogenic aliphatic amino acids, Biochimica et Biophysica Acta (BBA)-General, 2016, Volume 1861, Issue 1, Part A, January 2017, Pages 3258-3269.
- Brian Hopkins and Hua Wang, Restricted Color n-color Compositions, arXiv:2003.05291 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 434
- S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, Introducing supersymmetric frieze patterns and linear difference operators, Math. Z. 281 (2015) 1061.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- R. Sachdeva and A. K. Agarwal, Combinatorics of certain restricted n-color composition functions, Discrete Mathematics, 340, (2017), 361-372.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Alexey Ustinov, Supercontinuants, arXiv:1503.04497 [math.NT], 2015.
- Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019).
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.
- Roman Witula, D. Slota and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1).
Cf.
A005578,
A006053,
A006356,
A007583,
A080937,
A094790,
A214683,
A214699,
A214779,
A215112,
A306334.
-
a006054 n = a006053_list !! n
a006054_list = 0 : 0 : 1 : zipWith (+) (map (2 *) $ drop 2 a006054_list)
(zipWith (-) (tail a006054_list) a006054_list)
-- Reinhard Zumkeller, Oct 14 2011
-
A006054:=z**2/(1-2*z-z**2+z**3); # Simon Plouffe in his 1992 dissertation
-
LinearRecurrence[{2, 1, -1}, {0, 0, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *)
-
a(n):=if n<2 then 0 else if n=2 then 1 else b(n-2);
b(n):=sum(sum(binomial(j,n-3*k+2*j)*(-1)^(j-k)*binomial(k,j)*2^(-n+3*k-j),j,0,k),k,1,n); /* Vladimir Kruchinin, May 05 2011 */
-
x='x+O('x^66);
concat([0, 0], Vec(x^2/(1-2*x-x^2+x^3))) \\ Joerg Arndt, May 05 2011
A006356
a(n) = 2*a(n-1) + a(n-2) - a(n-3) for n >= 3, starting with a(0) = 1, a(1) = 3, and a(2) = 6.
Original entry on oeis.org
1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209, 19181424995
Offset: 0
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd edition, p. 291 (very briefly without generalizations).
- J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
- Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- J. Berman and P. Köhler, On Dedekind Numbers and Two Sequences of Knuth, J. Int. Seq., Vol. 24 (2021), Article 21.10.7.
- Sela Fried, A formula for the number of up-down words, arXiv:2503.02005 [math.CO], 2025.
- Emma L. L. Gao, Sergey Kitaev, and Philip B. Zhang, Pattern-avoiding alternating words, arXiv:1505.04078 [math.CO], 2015.
- Shanzhen Gao and Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science.
- S. Gao and H. Niederhausen, Sequences Arising From Prudent Self-Avoiding Walks, 2010.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- V. E. Hoggatt Jr. and M. Bicknell-Johnson, Reflections across two and three glass plates, Fibonacci Quarterly, volume 17 (1979), 118-142.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 451
- L. E. Jeffery, Unit-primitive matrices
- B. Junge and V. E. Hoggatt, Jr., Polynomials arising from reflections across multiple plates, Fib. Quart., 11 (1973), 285-291.
- Peter Köhler, The Central Decomposition of FD_01(n), Order (2021).
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Julien Leroy, Michel Rigo, and Manon Stipulanti, Behavior of Digital Sequences Through Exotic Numeration Systems, Electronic Journal of Combinatorics 24(1) (2017), #P1.44.
- Leo Moser, Problem B-6: some reflections, Fib. Quart. Vol. 1, No. 4 (1963), 75-76.
- Leo Moser and Max Wyman, Multiple reflections, Fib. Quart., 11 (1973).
- Gregg Musiker, Ralf Schiffler, Nicholas Ovenhouse, and Sylvester Zhang, Higher Dimer Covers on Snake Graphs, arXiv:2306.14389 [math.CO], 2023.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Lingjuan Shi and Kai Deng, The Numbers of Perfect and Maximal Matchings in Double Hexagonal Chains, Match Comm. Math. Comp. Chem. (2025) 659-685. See p. 8.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- R. Witula, D. Slota and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1).
-
a006056 n = a006056_list !! n
a006056_list = 1 : 3 : 6 : zipWith (+) (map (2 *) $ drop 2 a006056_list)
(zipWith (-) (tail a006056_list) a006056_list)
-- Reinhard Zumkeller, Oct 14 2011
-
[ n eq 1 select 1 else n eq 2 select 3 else n eq 3 select 6 else 2*Self(n-1)+Self(n-2)- Self(n-3): n in [1..40] ] ; // Vincenzo Librandi, Aug 20 2011
-
A006356:=-(-1-z+z**2)/(1-2*z-z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation
-
LinearRecurrence[{2,1,-1},{1,3,6},30] (* or *) CoefficientList[ Series[ (1+x-x^2)/(1-2x-x^2+x^3),{x,0,30}],x] (* Harvey P. Dale, Jul 06 2011 *)
Table[If[n==0, a2=0; a1=1; a0=1, a3=a2; a2=a1; a1=a0; a0=2*a1+a2-a3], {n, 0, 29}] (* Jean-François Alcover, Apr 30 2013 *)
-
a(n):=sum(sum((sum(binomial(j,-3*k+2*j+i)*(-1)^(j-k)*binomial(k,j),j,0,k))*binomial(n+k-i-1,k-1),i,k,n),k,1,n); /* Vladimir Kruchinin, May 05 2011 */
-
{a(n)=local(p=3);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 06 2006
-
Vec((1+x-x^2)/(1-2*x-x^2+x^3)+O(x^66)) \\ Joerg Arndt, Apr 30 2013
-
from math import comb
def A006356(n): return sum(comb(j,a)*comb(k,j)*comb(n+k-i,k-1)*(-1 if j-k&1 else 1) for k in range(1,n+2) for i in range(k,n+2) for j in range(k+1) if (a:=-3*k+2*j+i)>=0) # Chai Wah Wu, Feb 19 2024
Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
A370377
a(n) is the number of symmetrical linear hydrocarbon chains with n C-C bonds.
Original entry on oeis.org
1, 3, 2, 6, 5, 14, 11, 31, 25, 70, 56, 157, 126, 353, 283, 793, 636, 1782, 1429, 4004, 3211, 8997, 7215, 20216, 16212, 45425, 36428, 102069, 81853, 229347, 183922, 515338, 413269, 1157954, 928607, 2601899, 2086561, 5846414, 4688460, 13136773, 10534874
Offset: 0
For n = 1: a(1) = A006356(1) = 3
CH3-CH3, CH2=CH2, CH≡CH
For n = 3: a(3) = A006356(2) = 6
CH3-CH2-CH2-CH3, CH3-CH=CH-CH3, CH3-C≡C-CH3, CH2=CH-CH=CH2, CH≡C-C≡CH, CH2=C=C=CH2
For n = 4: a(4) = A006356(2) - A006356(0) = 6 - 1 = 5
CH3-CH2-CH2-CH2-CH3, CH3-CH=C=CH-CH3, CH2=CH-CH2-CH=CH2, CH≡C-CH2-C≡CH, CH2=C=C=C=CH2
-
LinearRecurrence[{0, 2, 0, 1, 0, -1}, {1, 3, 2, 6, 5, 14}, 50] (* Paolo Xausa, Feb 22 2024 *)
-
Vec(O(x^55)+(1+3*x-x^5)/(1-2*x^2-x^4+x^6)) \\ Joerg Arndt, Feb 18 2024
-
a = [1, 3, 2, 6, 5, 14]
for i in range(30):
a.append(2*a[-2]+a[-4]-a[-6])
print(a)
Showing 1-3 of 3 results.
Comments