A005021 Random walks (binomial transform of A006054).
1, 5, 19, 66, 221, 728, 2380, 7753, 25213, 81927, 266110, 864201, 2806272, 9112264, 29587889, 96072133, 311945595, 1012883066, 3288813893, 10678716664, 34673583028, 112584429049, 365559363741, 1186963827439, 3854047383798, 12514013318097, 40632746115136
Offset: 0
References
- W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Andrei Asinowski and Michaela A. Polley, Patterns in rectangulations. Part I: T-like patterns, inversion sequence classes I(010, 101, 120, 201) and I(011, 201), and rushed Dyck paths, arXiv:2501.11781 [math.CO], 2025. See p. 26.
- Jean-Luc Baril and Helmut Prodinger, Enumeration of partial Lukasiewicz paths, arXiv:2205.01383 [math.CO], 2022.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- C. J. Everett and P. R. Stein, The combinatorics of random walk with absorbing barriers, Discrete Math. 17 (1977), no. 1, 27-45.
- C. J. Everett and P. R. Stein, The combinatorics of random walk with absorbing barriers, Discrete Math. 17 (1977), no. 1, 27-45. [Annotated scanned copy]
- G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
- S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987; arXiv:1008.3359 [math.AG], 2010-2011. - From _N. J. A. Sloane_, Dec 26 2012
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- N. J. A. Sloane, Transforms
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (5,-6,1).
Crossrefs
Programs
-
Magma
I:=[1,5,19]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
-
Maple
a:=k->sum(binomial(5+2*k,7*j+k-2),j=ceil((2-k)/7)..floor((7+k)/7))-sum(binomial(5+2*k,7*j+k-1),j=ceil((1-k)/7)..floor((6+k)/7)): seq(a(k),k=0..25); A005021:=-(z-1)*(z-5)/(-1+5*z-6*z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence apart from the initial 1
-
Mathematica
LinearRecurrence[{5,-6,1}, {1,5,19}, 50] (* Roman Witula, Aug 09 2012 *) CoefficientList[Series[1/(1 - 5 x + 6 x^2 - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
-
PARI
x='x+O('x^30); Vec(1/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 19 2018
Formula
G.f.: 1/(1-5x+6x^2-x^3). - Emeric Deutsch, Apr 02 2004
a(n) = 5*a(n-1) -6*a(n-2) +a(n-3). - Emeric Deutsch, Apr 02 2004
a(n) = Sum_{j=-infinity..infinity} (binomial(5+2*k, 7*j+k-2) - binomial(5+2*k, 7*j+k-1)) (a finite sum).
a(n-2) = 2^n*C(n;1/2)=(1/7)*((c(2)-c(4))*(c(4))^(2n) + (c(4)-c(1))*(c(1))^(2n) + (c(1)-c(2))*(c(2))^(2n)), where a(-2)=a(-1):=0, c(j):=2*cos(2Pi*j/7). This formula follows from the Binet formula for C(n;d)--one of the quasi-Fibonacci numbers (see comments in A121449 and the formula (3.17) in the Witula-Slota-Warzynski paper). - Roman Witula, Aug 09 2012
In terms of the algebraic number r = rho(7) = 2*cos(Pi/7) = A160389 of degree 3 the preceding formula gives a(n) = r^(2*(n+2))*(A1(r) + A2(r)*(r - 2/r)^(2*(n+1)) = A3(r)*(r - 1 - 1/r)^(2*(n+1)))/7, for n >= -4 (see a comment above for this offset), with A1(r) = -r^2 + 2*r + 1, A2(r) = -r^2 - r + 2, and A3(r) = 2*r^2 - r - 3. - Wolfdieter Lang, Mar 30 2020
Extensions
a(25)-a(26) from Vincenzo Librandi, Sep 18 2015
Comments