A059594 Convolution triangle based on A008619 (positive integers repeated).
1, 1, 1, 2, 2, 1, 2, 5, 3, 1, 3, 8, 9, 4, 1, 3, 14, 19, 14, 5, 1, 4, 20, 39, 36, 20, 6, 1, 4, 30, 69, 85, 60, 27, 7, 1, 5, 40, 119, 176, 160, 92, 35, 8, 1, 5, 55, 189, 344, 376, 273, 133, 44, 9, 1, 6, 70, 294, 624, 820, 714, 434
Offset: 0
Examples
{1}; {1,1}; {2,2,1}; {2,5,3,1}; ... Fourth row polynomial (n=3): p(3,x)= 2 + 5*x + 3*x^2 + x^3.
Programs
-
Mathematica
t[n_, m_] := Sum[Sum[Binomial[j, n-m-3*k+2*j]*(-1)^(j-k)*Binomial[k, j], {j, 0, k}]*Binomial[m+k, m], {k, 0, n-m}]; Table[t[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, May 27 2013, after Vladimir Kruchinin *)
-
Maxima
T(n,m):=sum((sum(binomial(j,n-m-3*k+2*j)*(-1)^(j-k)*binomial(k,j),j,0,k)) *binomial(m+k,m),k,0,n-m); /* Vladimir Kruchinin, Dec 14 2011 */
Formula
a(n, m) := a(n-1, m) + (-(n-m+1)*a(n, m-1) + 3*(n+2*m)*a(n-1, m-1))/(8*m), n >= m >= 1; a(n, 0) := floor((n+2)/2) = A008619(n), n >= 0; a(n, m) := 0 if n < m.
G.f.for column m >= 0: ((x/((1-x^2)*(1-x)))^m)/((1-x^2)*(1-x)).
T(n,m) = Sum_{k=0..n-m} (Sum_{j=0..k} binomial(j, n-m-3*k+2*j)*(-1)^(j-k)*binomial(k,j))*binomial(m+k,m). - Vladimir Kruchinin, Dec 14 2011
Recurrence: T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-3,k) with T(0,0) = 1. - Philippe Deléham, Feb 23 2012
Comments