cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A080937 Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps with all values <= 5.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, 45542, 147798, 479779, 1557649, 5057369, 16420730, 53317085, 173118414, 562110290, 1825158051, 5926246929, 19242396629, 62479659622, 202870165265, 658715265222, 2138834994142, 6944753544643, 22549473023585
Offset: 0

Views

Author

Henry Bottomley, Feb 25 2003

Keywords

Comments

With interpolated zeros (1,0,1,0,2,...), counts closed walks of length n at start or end node of P_6. The sequence (0,1,0,2,...) counts walks of length n between the start and second node. - Paul Barry, Jan 26 2005
HANKEL transform of sequence and the sequence omitting a(0) is the sequence A130716. This is the unique sequence with that property. - Michael Somos, May 04 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
a(n) is also the upper left entry of the n-th power of the 3 X 3 tridiagonal matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602: a(n) = ((M_3)^n)[1,1].
Proof: (M_3)^n = b(n-2)*(M_3)^2 - (6*b(n-3) - b(n-4))*M_3 + b(n-3)*1_3, for n >= 0, with b(n) = A005021(n), for n >= -4. For the proof of this see a comment in A005021. Hence (M_3)^n[1,1] = 2*b(n-2) - 5*b(n-3) + b(n-4), for n >= 0. This proves the 3 X 3 part of the conjecture in A332602 by Gary W. Adamson.
The formula for a(n) given below in terms of r = rho(7) = A160389 proves that a(n)/a(n-1) converges to rho(7)^2 = A116425 = 3.2469796..., because r - 2/r = 0.6920... < 1, and r^2 - 3 = 0.2469... < 1. This limit was conjectured in A332602 by Gary W. Adamson.
(End)

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 131*x^6 + 417*x^7 + 1341*x^8 + ...
		

Crossrefs

Cf. A033191 which essentially provide the same sequence for different limits and tend to A000108.

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 09 2016
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|-6|5>>^n. <<1, 1, 2>>)[1, 1]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 09 2012
  • Mathematica
    nn=56;Select[CoefficientList[Series[(1-4x^2+3x^4)/(1-5x^2+6x^4-x^6), {x,0,nn}], x],#>0 &] (* Geoffrey Critzer, Jan 26 2014 *)
    LinearRecurrence[{5,-6,1},{1,1,2},30] (* Jean-François Alcover, Jan 09 2016 *)
  • PARI
    a=vector(99); a[1]=1; a[2]=2;a[3]=5; for(n=4,#a,a[n]=5*a[n-1]-6*a[n-2] +a[n-3]); a \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    {a(n) = if( n<0, n = -n; polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, May 04 2012 */
    

Formula

a(n) = A080934(n,5).
G.f.: (1-4*x+3*x^2)/(1-5*x+6*x^2-x^3). - Ralf Stephan, May 13 2003
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). - Herbert Kociemba, Jun 11 2004
a(n) = A096976(2*n). - Floor van Lamoen, Nov 02 2005
a(n) = (4/7-4/7*cos(1/7*Pi)^2)*(4*(cos(Pi/7))^2)^n + (1/7-2/7*cos(1/7*Pi) + 4/7*cos(1/7*Pi)^2)*(4*(cos(2*Pi/7))^2)^n + (2/7+2/7*cos(1/7*Pi))*(4*(cos(3*Pi/7))^2)^n for n>=0. - Richard Choulet, Apr 19 2010
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x))))). - Michael Somos, May 04 2012
a(-n) = A038213(n). a(n + 2) * a(n) - a(n + 1)^2 = a(1 - n). Convolution inverse is A123183 with A123183(0)=1. - Michael Somos, May 04 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
In terms of the algebraic number r = rho(7) = A160389 of degree 3 the formula given by Richard Choulet becomes a(n) = (1/7)*(r)^(2*n)*(C1(r) + C2(r)*(r - 2/r)^(2*n) + C3(r)*(r^2 - 3)^(2*n)), with C1(r) = 4 - r^2, C2(r) = 1 - r + r^2, and C3 = 2 + r.
a(n) = ((M_3)^n)[1,1] = 2*b(n-2) - 5*b(n-3) + b(n-4), for n >= 0, with the 3 X 3 tridiagonal matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602, and b(n) = A005021(n) (with offset n >= -4). (End)

A094789 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 4.

Original entry on oeis.org

1, 4, 14, 47, 155, 507, 1652, 5373, 17460, 56714, 184183, 598091, 1942071, 6305992, 20475625, 66484244, 215873462, 700937471, 2275930827, 7389902771, 23994866364, 77910846021, 252974934692, 821404463698, 2667083556359
Offset: 1

Views

Author

Herbert Kociemba, Jun 11 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k.
With interpolated zeros (0,0,0,1,0,4,0,14,...) counts walks of length n between the start and fourth nodes on P_6. - Paul Barry, Jan 26 2005
The Hankel transforms of this sequence or of this sequence with the first term omitted give 1, -2, 1, 1, -2, 1, ... . - Wathek Chammam, Nov 16 2011
Diagonal of the square array A216201. - Philippe Deléham, Mar 28 2013

Crossrefs

Programs

  • Magma
    I:=[1,4,14]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014
    
  • Mathematica
    f[n_] := FullSimplify[ TrigToExp[(2/7)Sum[ Sin[Pi*k/7]Sin[4Pi*k/7](2Cos[Pi*k/7])^(2n + 1), {k, 1, 6}]]]; Table[ f[n], {n, 25}] (* Robert G. Wilson v, Jun 18 2004 *)
    LinearRecurrence[{5,-6,1}, {1,4,14}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[(x - 1) / (- 1 + 5 x - 6 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
  • PARI
    Vec(x*(x-1)/(-1 + 5*x - 6*x^2 + x^3) + O(x^40)) \\ Michel Marcus, Nov 10 2014

Formula

a(n) = (2/7)*Sum_{k = 1..6} sin(Pi*k/7)*sin(4*Pi*k/7)*(2*cos(Pi*k/7))^(2n + 1).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3).
G.f.: x*(x-1)/(-1 + 5*x - 6*x^2 + x^3). - Corrected by Vincenzo Librandi, Nov 10 2014
a(n) = 2^n*B(n; 1/2) = (1/7)*((c(1) - c(4))*(c(4))^(2n) + (c(2) - c(1))*(c(1))^(2n) + (c(4) - c(2))*(c(2))^(2n)), where c(j) := 2*cos(2*Pi*j/7). Here B(n; d), n in N, d in C denotes the respective quasi-Fibonacci number - see A121449 and Witula-Slota-Warzynski paper for details (see also A052975, A085810, A077998, A006054, A121442). - Roman Witula, Aug 09 2012
a(n+1) = A216201(n,n+2) = A216201(n,n+3). - Philippe Deléham, Mar 28 2013

A094790 Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2*n, s(0) = 1, s(2n) = 3.

Original entry on oeis.org

1, 3, 9, 28, 89, 286, 924, 2993, 9707, 31501, 102256, 331981, 1077870, 3499720, 11363361, 36896355, 119801329, 388991876, 1263047761, 4101088878, 13316149700, 43237262993, 140390505643, 455845099957, 1480119728920
Offset: 1

Views

Author

Herbert Kociemba, Jun 11 2004

Keywords

Comments

In general a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n)) counts (s(0), s(1), ..., s(2n)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = j, s(2n) = k.
With interpolated zeros (0,0,1,0,3,0,9,...), counts walks of length n between the first and third nodes of P_6. - Paul Barry, Jan 26 2005
Counts all paths of length (2*n+1), n >= 0, starting at the initial node and ending on the nodes 1, 2, 3, 4 and 5 on the path graph P_6, see the Maple program. - Johannes W. Meijer, May 29 2010
With offset 0 = the INVERT transform of A055588. - Gary W. Adamson, Apr 01 2011

Crossrefs

Programs

  • Magma
    [n le 3 select 3^(n-1) else 5*Self(n-1) -6*Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Feb 12 2023
    
  • Maple
    with(GraphTheory):G:=PathGraph(6): A:= AdjacencyMatrix(G): nmax:=24; n2:=2*nmax+1: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[k,1],k=1..5); od: seq(a(2*n+1),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    f[n_]:= FullSimplify[ TrigToExp[(2/7)Sum[ Sin[Pi*k/7]Sin[3Pi*k/7](2Cos[Pi*k/7] )^(2n), {k,6}]]];
    Table[f[n], {n, 25}] (* Robert G. Wilson v, Jun 18 2004 *)
    LinearRecurrence[{5,-6,1},{1,3,9},30] (* Harvey P. Dale, Nov 19 2019 *)
  • PARI
    Vec(x*(1-2*x)/(1-5*x+6*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Jun 14 2015
    
  • SageMath
    @CachedFunction
    def a(n): # a = A094790
        if (n<4): return 3^(n-1)
        else: return 5*a(n-1) - 6*a(n-2) + a(n-3)
    [a(n) for n in range(1,41)] # G. C. Greubel, Feb 12 2023

Formula

a(n) = (2/7)*Sum_{k=1..6} sin(Pi*k/7)*sin(3*Pi*k/7)*(2*cos(Pi*k/7))^(2n).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3).
G.f.: x*(1-2*x)/(1 - 5*x + 6*x^2 - x^3).
a(n) = rightmost term in M^n * [1,0,0] where M = the 3 X 3 matrix [2,1,1; 1,2,0; 1,0,1]. E.g., M^3 * [1,0,0] = [19,14,9]; right term = 9 = a(3). - Gary W. Adamson, Apr 04 2006

A052975 Expansion of (1-2*x)*(1-x)/(1-5*x+6*x^2-x^3).

Original entry on oeis.org

1, 2, 6, 19, 61, 197, 638, 2069, 6714, 21794, 70755, 229725, 745889, 2421850, 7863641, 25532994, 82904974, 269190547, 874055885, 2838041117, 9215060822, 29921113293, 97153242650, 315454594314, 1024274628963, 3325798821581, 10798800928441, 35063486341682
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 3. - Herbert Kociemba, Jun 11 2004
Counts all paths of length (2*n), n>=0, starting at the initial node and ending on the nodes 1, 2, 3, 4 and 5 on the path graph P_6, see the second Maple program. - Johannes W. Meijer, May 29 2010

Crossrefs

Programs

  • Magma
    I:=[1,2,6]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
    
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Sequence(Prod(Sequence(Z),Z)),Sequence(Z)),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    with(GraphTheory):G:=PathGraph(6): A:= AdjacencyMatrix(G): nmax:=25; n2:=2*nmax+1: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[k,1],k=1..5); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{5,-6,1}, {1,2,6}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[(1 - 2 x) (1 - x)/(1 - 5 x + 6 x^2 - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x)*(1-x)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 19 2018

Formula

G.f.: (1-2*x)*(1-x)/(1-5*x+6*x^2-x^3).
a(n) = A028495(2*n). - Floor van Lamoen, Nov 02 2005
a(n) = Sum (1/7*(2-3*_alpha+_alpha^2)*_alpha^(-1-n), _alpha=RootOf(-1+5*_Z-6*_Z^2+_Z^3))
From Herbert Kociemba, Jun 11 2004: (Start)
a(n) = (2/7)*Sum_{r=1..6} sin(r*3*Pi/7)^2*(2*cos(r*Pi/7))^(2*n).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). (End)
a(n) = 2^n*A(n;1/2) = (1/7)*(s(2)^2*c(4)^(2n) + s(4)^2*c(1)^(2n) + s(1)^2*c(2)^(2n)), where c(j):=2*cos(2Pi*j/7) and s(j):=2*sin(2*Pi*j/7). Here A(n;d), n in N, d in C denotes the respective quasi-Fibonacci number - see A121449 and Witula-Slota-Warzynski paper for details (see also A094789, A085810, A077998, A006054, A121442). I note that my and the respective Herbert Kociemba's formulas are "compatible". - Roman Witula, Aug 09 2012
a(n) = A005021(n)-3*A005021(n-1)+2*A005021(n-2). - R. J. Mathar, Feb 27 2019

A215694 a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3) with a(0)=1, a(1)=2, a(2)=7.

Original entry on oeis.org

1, 2, 7, 24, 80, 263, 859, 2797, 9094, 29547, 95968, 311652, 1011999, 3286051, 10669913, 34645258, 112492863, 365262680, 1186001480, 3850924183, 12503874715, 40599829957, 131826825678, 428039023363, 1389833992704, 4512762649020, 14652848312239, 47577499659779, 154483171074481, 501603705725970, 1628697001842743
Offset: 0

Views

Author

Roman Witula, Aug 21 2012

Keywords

Comments

The Berndt-type sequence number 9 for the argument 2Pi/7 defined by the first trigonometric relation from section "Formula". For more connections with another sequences of trigonometric nature see comments to A215512 (a(n) is equal to the sequence b(n) in these comments) and Witula-Slota's reference (Section 3). We note that a(n)=A109682(n) for n=1,2,3,4. Moreover the following summation formula hold true: sum{k=3,..,n} a(k) = 5*a(n-1) - a(n-2) - 9, for every n=3,4,... - see comments to A215512.
The inverse binomial transform is 1,1, 4, 8, 19, 42, 95,... essentially a shifted, unsigned variant of A215112. - R. J. Mathar, Aug 22 2012

Examples

			We have 10*a(3) = 3*a(4), a(0)+a(1)+3*a(2) = a(3), a(0)+a(2)+3*a(3) = a(4), a(1)+3*a(2)+3*a(4) = a(5), and a(6) = 3*a(5)+3*a(4)-a(1).
		

Crossrefs

Programs

  • Magma
    I:=[1,2,7]; [n le 3 select I[n] else 5*Self(n-1) - 6*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 25 2018
  • Mathematica
    LinearRecurrence[{5,-6,1}, {1,2,7}, 50]
  • PARI
    Vec((1-3*x+3*x^2)/(1-5*x+6*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
    

Formula

sqrt(7)*a(n) = s(4)*c(1)^(2*n) + s(1)*c(2)^(2*n) + s(2)*c(4)^(2*n), where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7).
G.f.: (1-3*x+3*x^2)/(1-5*x+6*x^2-x^3).
a(n) = A005021(n)-3*A005021(n-1)+3*A005021(n-2). - R. J. Mathar, Aug 22 2012

A215695 a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3) with a(0)=1, a(1)=0, a(2)=-2.

Original entry on oeis.org

1, 0, -2, -9, -33, -113, -376, -1235, -4032, -13126, -42673, -138641, -450293, -1462292, -4748343, -15418256, -50063514, -162556377, -527819057, -1713820537, -5564744720, -18068619435, -58668449392, -190495275070, -618534298433, -2008368291137, -6521130940157, -21173979252396, -68751478912175, -223234649986656, -724838355712626
Offset: 0

Views

Author

Roman Witula, Aug 21 2012

Keywords

Comments

The Berndt-type sequence number 10 for the argument 2Pi/7 defined by the first trigonometric relation from section "Formula". For additional informations and particularly connections with another sequences of trigonometric nature - see comments to A215512 (a(n) is equal to the sequence c(n) in these comments) and Witula-Slota's reference (Section 3).
The following summation formula hold true (see comments to A215512): Sum{k=3,..,n} a(k) = 5*a(n-1) - a(n-2) + 1, n=3,4,...

Examples

			We have a(8)=3*a(7)+3*a(5)-6*a(2) and a(9)=3*a(8)+3*a(6)-3*a(4)-a(1).
		

Crossrefs

Cf. A215512 (the inverse binomial transform, up to signs), A215694.

Programs

  • Magma
    I:=[1,0,-2]; [n le 3 select I[n] else 5*Self(n-1) - 6*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 25 2018
  • Mathematica
    LinearRecurrence[{5,-6,1}, {1,0,-2}, 50]
  • PARI
    x='x+O('x^30); Vec((1-5*x+4*x^2)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 25 2018
    

Formula

sqrt(7)*a(n) = s(1)*c(1)^(2*n) + s(2)*c(2)^(2*n) + s(4)*c(4)^(2*n), where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7).
G.f.: (1-5*x+4*x^2)/(1-5*x+6*x^2-x^3).
a(n) = A005021(n) - 5*A005021(n-1) + 4*A005021(n-2). - R. J. Mathar, Aug 22 2012

A122588 Expansion of x/(1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5).

Original entry on oeis.org

1, 9, 53, 260, 1156, 4845, 19551, 76912, 297275, 1134705, 4292145, 16128061, 60304951, 224660626, 834641671, 3094322026, 11453607152, 42344301686, 156404021389, 577291806894, 2129654436910, 7853149169635, 28949515515376, 106692395098433, 393137817645838
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 19 2006

Keywords

Comments

Essentially the same as A005025. - R. J. Mathar, Aug 02 2008

Crossrefs

Programs

  • Magma
    I:=[1,9,53,260,1156]; [n le 5 select I[n] else 9*Self(n-1) -28*Self(n-2) +35*Self(n-3) -15*Self(n-4) +Self(n-5): n in [1..30]]; // G. C. Greubel, Nov 29 2021
    
  • Mathematica
    m = 10; p[x_]:= ExpandAll[x^m*ChebyshevU[m, 1/x]]; Table[SeriesCoefficient[ Series[2^(n+m-1)*x/p[x], {x,0,30}], n], {n,1,30,2}]
  • Sage
    def A122588_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x/(1-9*x+28*x^2-35*x^3+15*x^4-x^5) ).list()
    a=A122588_list(31); a[1:] # G. C. Greubel, Nov 29 2021

Formula

G.f.: x/(1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5).

Extensions

Generating function corrected by R. J. Mathar, Jul 09 2009
New name (using g.f.) and editing by Joerg Arndt, Feb 12 2015

A188843 T(n,k) is the number of n X k binary arrays without the pattern 0 1 diagonally or vertically.

Original entry on oeis.org

2, 4, 3, 8, 8, 4, 16, 21, 13, 5, 32, 55, 40, 19, 6, 64, 144, 121, 66, 26, 7, 128, 377, 364, 221, 100, 34, 8, 256, 987, 1093, 728, 364, 143, 43, 9, 512, 2584, 3280, 2380, 1288, 560, 196, 53, 10, 1024, 6765, 9841, 7753, 4488, 2108, 820, 260, 64, 11, 2048, 17711, 29524
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2011

Keywords

Comments

Table starts
2 4 8 16 32 64 128 256 512 1024 2048 4096
3 8 21 55 144 377 987 2584 6765 17711 46368 121393
4 13 40 121 364 1093 3280 9841 29524 88573 265720 797161
5 19 66 221 728 2380 7753 25213 81927 266110 864201 2806272
6 26 100 364 1288 4488 15504 53296 182688 625184 2137408 7303360
7 34 143 560 2108 7752 28101 100947 360526 1282735 4552624 16131656
8 43 196 820 3264 12597 47652 177859 657800 2417416 8844448 32256553
9 53 260 1156 4845 19551 76912 297275 1134705 4292145 16128061 60304951
10 64 336 1581 6954 29260 119416 476905 1874730 7283640 28048800 107286661
11 76 425 2109 9709 42504 179630 740025 2991495 11920740 46981740 183579396

Examples

			Some solutions for 5 X 3:
  0 0 1    1 1 0    1 1 1    0 1 0    1 1 0    1 1 0    1 1 1
  0 0 0    1 0 0    1 1 0    0 0 0    1 1 0    1 1 0    1 1 1
  0 0 0    0 0 0    1 1 0    0 0 0    1 0 0    1 1 0    0 1 1
  0 0 0    0 0 0    1 1 0    0 0 0    1 0 0    1 0 0    0 0 0
  0 0 0    0 0 0    0 0 0    0 0 0    0 0 0    0 0 0    0 0 0
		

Crossrefs

Diagonal is A143388.
Column 2 is A034856(n+1).
Column 3 is A137742(n+1).
Row 2 is A001906(n+1).
Row 3 is A003462(n+1).
Row 4 is A005021.
Row 5 is A005022.
Row 6 is A005023.
Row 7 is A005024.
Row 8 is A005025.

Formula

Row recurrence
Empirical: T(n,k) = Sum_{i=1..floor((n+2)/2)} binomial(n+2-i,i)*T(n,k-i)*(-1)^(i-1).
E.g.,
empirical: T(1,k) = 2*T(1,k-1),
empirical: T(2,k) = 3*T(2,k-1) - T(2,k-2),
empirical: T(3,k) = 4*T(3,k-1) - 3*T(3,k-2),
empirical: T(4,k) = 5*T(4,k-1) - 6*T(4,k-2) + T(4,k-3),
empirical: T(5,k) = 6*T(5,k-1) - 10*T(5,k-2) + 4*T(5,k-3),
empirical: T(6,k) = 7*T(6,k-1) - 15*T(6,k-2) + 10*T(6,k-3) - T(6,k-4),
empirical: T(7,k) = 8*T(7,k-1) - 21*T(7,k-2) + 20*T(7,k-3) - 5*T(7,k-4),
empirical: T(8,k) = 9*T(8,k-1) - 28*T(8,k-2) + 35*T(8,k-3) - 15*T(8,k-4) + T(8,k-5).
Columns are polynomials for n > k-3.
Empirical: T(n,1) = n + 1.
Empirical: T(n,2) = (1/2)*n^2 + (5/2)*n + 1.
Empirical: T(n,3) = (1/6)*n^3 + 2*n^2 + (35/6)*n.
Empirical: T(n,4) = (1/24)*n^4 + (11/12)*n^3 + (155/24)*n^2 + (163/12)*n - 6 for n > 1.
Empirical: T(n,5) = (1/120)*n^5 + (7/24)*n^4 + (89/24)*n^3 + (473/24)*n^2 + (1877/60)*n - 33 for n > 2.
Empirical: T(n,6) = (1/720)*n^6 + (17/240)*n^5 + (203/144)*n^4 + (647/48)*n^3 + (2659/45)*n^2 + (1379/20)*n - 143 for n > 3.
Empirical: T(n,7) = (1/5040)*n^7 + (1/72)*n^6 + (143/360)*n^5 + (53/9)*n^4 + (33667/720)*n^3 + (12679/72)*n^2 + (9439/70)*n - 572 for n > 4.
Empirical: T(n,8) = (1/40320)*n^8 + (23/10080)*n^7 + (17/192)*n^6 + (269/144)*n^5 + (43949/1920)*n^4 + (228401/1440)*n^3 + (1054411/2016)*n^2 + (9941/56)*n - 2210 for n > 5.

A215404 a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3), with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 4, 13, 39, 113, 322, 910, 2561, 7192, 20175, 56563, 158535, 444276, 1244936, 3488381, 9774440, 27387681, 76739023, 215018609, 602469686, 1688083894, 4729907909, 13252910268, 37133833451, 104046695091, 291532369743, 816855560248, 2288778436672, 6413014696201
Offset: 0

Views

Author

Roman Witula, Aug 09 2012

Keywords

Comments

We have a(n)=C(n;-1), A121449(n)=A(n;-1), A085810(n+1)=-B(n+1;-1), where A(n;d), B(n;d), and C(n;d), n in N, d in C, are so-called quasi-Fibonacci numbers defined and discussed in the comments to A121449 and in Witula-Slota-Warzynski's paper. It follows from formulas (3.47-49) in this paper that the value of A(n;1/3), B(n;1/3) and C(n;1/3) could be obtained from special convolution type identities for sequences a(n), A121449, and A085810.

Crossrefs

Programs

  • Magma
    I:=[0,0,1]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..35]]; // Vincenzo Librandi, Sep 18 2015
  • Mathematica
    LinearRecurrence[{4,-3,-1}, {0,0,1}, 50]
    CoefficientList[Series[x^2/(1 - 4 x + 3 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    Vec(x^2/(1-4*x+3*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
    

Formula

G.f.: x^2/(1-4*x+3*x^2+x^3).
a(n) = (1/7)*((c(2)-c(4))*(1-c(1))^n + (c(4)-c(1))*(1-c(2))^n + (c(1)-c(2))*(1-c(4))^n), where c(j):=2*cos(2*Pi*j/7) - this formula is the Binet formula for a(n) (see the Binet formula (3.17) for the respective quasi-Fibonacci number C(n;d) for value d=-1 in the Witula-Slota-Warzynski paper).

A005023 Number of walks of length 2n+7 in the path graph P_8 from one end to the other.

Original entry on oeis.org

7, 34, 143, 560, 2108, 7752, 28101, 100947, 360526, 1282735, 4552624, 16131656, 57099056, 201962057, 714012495, 2523515514, 8916942687, 31504028992, 111295205284, 393151913464, 1388758662221, 4905479957435, 17327203698086, 61202661233823, 216176614077600
Offset: 1

Views

Author

Keywords

References

  • W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A094829 (first differences), A094256 (essentially the same).

Programs

  • Magma
    I:=[7, 34, 143, 560]; [n le 4 select I[n] else 7*Self(n-1)-15*Self(n-2)+10*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 08 2013
  • Maple
    a:=k->sum(binomial(7+2*k,9*j+k-2),j=ceil((2-k)/9)..floor((9+k)/9))-sum(binomial(7+2*k,9*j+k-1),j=ceil((1-k)/9)..floor((8+k)/9)): seq(a(k),k=1..28);
    A005023:=-(-7+15*z-10*z**2+z**3)/(z-1)/(z**3-9*z**2+6*z-1); # Conjectured by Simon Plouffe in his 1992 dissertation.
  • Mathematica
    CoefficientList[Series[(-z^3 + 10 z^2 - 15 z + 7)/(z^4 - 10 z^3 + 15 z^2 - 7 z + 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 27 2011 *)
    LinearRecurrence[{7,-15,10,-1},{7,34,143,560},40] (* Harvey P. Dale, May 26 2013 *)
    CoefficientList[Series[(1 / x) (1 / (1 - 7 x + 15 x^2 - 10 x^3 + x^4) - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 08 2013 *)

Formula

G.f.: 1/(1-7x+15x^2-10x^3+x^4) - 1. a(n)=7a(n-1)-15a(n-2)+10a(n-3)-a(n-4). - Emeric Deutsch, Apr 02 2004
a(k) = sum(binomial(7+2k, 9j+k-2)-binomial(7+2k, 9j+k-1), j=-infinity..infinity) (a finite sum).

Extensions

Better definition from Emeric Deutsch, Apr 02 2004
Showing 1-10 of 20 results. Next