cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A094256 Expansion of x / ( (x-1)*(x^3 - 9*x^2 + 6*x - 1) ).

Original entry on oeis.org

1, 7, 34, 143, 560, 2108, 7752, 28101, 100947, 360526, 1282735, 4552624, 16131656, 57099056, 201962057, 714012495, 2523515514, 8916942687, 31504028992, 111295205284, 393151913464, 1388758662221, 4905479957435, 17327203698086, 61202661233823, 216176614077600
Offset: 1

Views

Author

Gary W. Adamson, Apr 25 2004

Keywords

Comments

Previous name was: Let M = the 4 X 4 matrix [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / -1 10 -15 7]. Perform M^n * [1 0 0 0] = [p q r s]. Then a(n-3), a(n-2), a(n-1), a(n) = -p, -q, -r, -s respectively.
a(n)/a(n-1) tends to 3.53208888624... = 4*cos^2(Pi/9), which is an eigenvalue of the matrix and a root of the polynomial x^4 - 6x^3 + 15x^2 -10x + 1 = 0 (having roots 4*cos^2(r*Pi/9), with r = 1,2,3,4).
Number of (s(0), s(1), ..., s(2n+4)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+4, s(0) = 1, s(2n+4) = 7. - Herbert Kociemba, Jun 13 2004
From Wolfdieter Lang, Mar 27 2020: (Start)
This sequence, with offset -5, starting with -85, -10, -1, 0, 0, 0, 1, 7, ... appears in the formula for the n-th power of the 4 X 4 tridiagonal matrix given in A332602 as M_4 = matrix([1,1,0,0], [1,2,1,0], [0,1,2,1], [0,0,1,2]): (M_4)^n = a(n-2)*(M_4)^3 + b(n)*(M_4)^2 + c(n)*M_4 - a(n-3)*1_4, for n >= 0, with the 4 X 4 unit Matrix 1_4, b(n) = -15*a(n-3) + 10*a(n-4) - a(n-5), and c(n) = 10*a(n-3) - a(n-4). Proof from the characteristc polynomial of M_4 (see a comment in A332602) and the Cayley-Hamilton theorem.
From the proof that A094829(n+3)/A094829(n+2) -> rho(9)^2 = A332438 for n-> infinitiy, with rho(9) = 2*cos(Pi/9) = A332437 (see a comment in A094829), and a formula given below the same limit is obtained for a(n+1)/a(n) for n -> infinity, as stated in a comment above. (End)

Examples

			a(2), a(3), a(4), a(5) = 7, 34, 143, 560, since M^5 * [1 0 0 0] = [ -7 -34 -143 -560].
Cayley-Hamilton: (M_4)^5 = a(3)*(M_4)^3 + b(5)*(M_4)^2 + c(5)*M_4 - a(2)*1_4 = 34*(M_4)^3 - 95*(M_4)^2 + 69*M_4 - 7*1_4. - _Wolfdieter Lang_, Mar 27 2020
		

References

  • C. V. Durell and A. Robson, "Advanced Trigonometry", Dover 2003, p. 216.

Crossrefs

a(n) = A005023(n-1), n > 1. - R. J. Mathar, Sep 05 2008

Programs

  • Magma
    I:=[1,7,34,143]; [n le 4 select I[n] else 7*Self(n-1) - 15*Self(n-2) + 10*Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jul 25 2015
    
  • Mathematica
    Table[ (MatrixPower[{{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {-1, 10, -15, 7}}, n].{-1, 0, 0, 0})[[4]], {n, 24}] (* Robert G. Wilson v, Apr 28 2004 *)
    LinearRecurrence[{7, -15, 10, -1}, {1, 7, 34, 143}, 40] (* Vincenzo Librandi, Jul 25 2015 *)
  • PARI
    Vec(x / ( (x-1)*(x^3-9*x^2+6*x-1) ) + O(x^30)) \\ Michel Marcus, Jul 25 2015

Formula

From Herbert Kociemba, Jun 13 2004: (Start)
a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/9)*sin(7*r*Pi/9)*(2*cos(r*Pi/9))^(2n+4).
a(n) = 7*a(n-1) - 15*a(n-2) + 10*a(n-3) - a(n-4).
G.f.: x / ( (x-1)*(x^3 - 9*x^2 + 6*x - 1) ). (End)
3*a(n) = 1 - A094829(n+2) + 8*A094829(n+1) - A094829(n). - R. J. Mathar, Jun 29 2012 [offset corrected, and A094829(1) = 0. - Wolfdieter Lang, Mar 27 2020]
a(n) = (1/3)*(1 + 2*A094829(n+1) + 8*A094829(n) - A094829(n-1)), for n >= 1, with A094829(1) and A094829(0) = 0. - Wolfdieter Lang, Mar 27 2020

Extensions

More terms from Robert G. Wilson v, Apr 28 2004
a(25)-a(26) from Vincenzo Librandi, Jul 25 2015
New name (using g.f. from Herbert Kociemba) from Joerg Arndt, Jul 25 2015

A188843 T(n,k) is the number of n X k binary arrays without the pattern 0 1 diagonally or vertically.

Original entry on oeis.org

2, 4, 3, 8, 8, 4, 16, 21, 13, 5, 32, 55, 40, 19, 6, 64, 144, 121, 66, 26, 7, 128, 377, 364, 221, 100, 34, 8, 256, 987, 1093, 728, 364, 143, 43, 9, 512, 2584, 3280, 2380, 1288, 560, 196, 53, 10, 1024, 6765, 9841, 7753, 4488, 2108, 820, 260, 64, 11, 2048, 17711, 29524
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2011

Keywords

Comments

Table starts
2 4 8 16 32 64 128 256 512 1024 2048 4096
3 8 21 55 144 377 987 2584 6765 17711 46368 121393
4 13 40 121 364 1093 3280 9841 29524 88573 265720 797161
5 19 66 221 728 2380 7753 25213 81927 266110 864201 2806272
6 26 100 364 1288 4488 15504 53296 182688 625184 2137408 7303360
7 34 143 560 2108 7752 28101 100947 360526 1282735 4552624 16131656
8 43 196 820 3264 12597 47652 177859 657800 2417416 8844448 32256553
9 53 260 1156 4845 19551 76912 297275 1134705 4292145 16128061 60304951
10 64 336 1581 6954 29260 119416 476905 1874730 7283640 28048800 107286661
11 76 425 2109 9709 42504 179630 740025 2991495 11920740 46981740 183579396

Examples

			Some solutions for 5 X 3:
  0 0 1    1 1 0    1 1 1    0 1 0    1 1 0    1 1 0    1 1 1
  0 0 0    1 0 0    1 1 0    0 0 0    1 1 0    1 1 0    1 1 1
  0 0 0    0 0 0    1 1 0    0 0 0    1 0 0    1 1 0    0 1 1
  0 0 0    0 0 0    1 1 0    0 0 0    1 0 0    1 0 0    0 0 0
  0 0 0    0 0 0    0 0 0    0 0 0    0 0 0    0 0 0    0 0 0
		

Crossrefs

Diagonal is A143388.
Column 2 is A034856(n+1).
Column 3 is A137742(n+1).
Row 2 is A001906(n+1).
Row 3 is A003462(n+1).
Row 4 is A005021.
Row 5 is A005022.
Row 6 is A005023.
Row 7 is A005024.
Row 8 is A005025.

Formula

Row recurrence
Empirical: T(n,k) = Sum_{i=1..floor((n+2)/2)} binomial(n+2-i,i)*T(n,k-i)*(-1)^(i-1).
E.g.,
empirical: T(1,k) = 2*T(1,k-1),
empirical: T(2,k) = 3*T(2,k-1) - T(2,k-2),
empirical: T(3,k) = 4*T(3,k-1) - 3*T(3,k-2),
empirical: T(4,k) = 5*T(4,k-1) - 6*T(4,k-2) + T(4,k-3),
empirical: T(5,k) = 6*T(5,k-1) - 10*T(5,k-2) + 4*T(5,k-3),
empirical: T(6,k) = 7*T(6,k-1) - 15*T(6,k-2) + 10*T(6,k-3) - T(6,k-4),
empirical: T(7,k) = 8*T(7,k-1) - 21*T(7,k-2) + 20*T(7,k-3) - 5*T(7,k-4),
empirical: T(8,k) = 9*T(8,k-1) - 28*T(8,k-2) + 35*T(8,k-3) - 15*T(8,k-4) + T(8,k-5).
Columns are polynomials for n > k-3.
Empirical: T(n,1) = n + 1.
Empirical: T(n,2) = (1/2)*n^2 + (5/2)*n + 1.
Empirical: T(n,3) = (1/6)*n^3 + 2*n^2 + (35/6)*n.
Empirical: T(n,4) = (1/24)*n^4 + (11/12)*n^3 + (155/24)*n^2 + (163/12)*n - 6 for n > 1.
Empirical: T(n,5) = (1/120)*n^5 + (7/24)*n^4 + (89/24)*n^3 + (473/24)*n^2 + (1877/60)*n - 33 for n > 2.
Empirical: T(n,6) = (1/720)*n^6 + (17/240)*n^5 + (203/144)*n^4 + (647/48)*n^3 + (2659/45)*n^2 + (1379/20)*n - 143 for n > 3.
Empirical: T(n,7) = (1/5040)*n^7 + (1/72)*n^6 + (143/360)*n^5 + (53/9)*n^4 + (33667/720)*n^3 + (12679/72)*n^2 + (9439/70)*n - 572 for n > 4.
Empirical: T(n,8) = (1/40320)*n^8 + (23/10080)*n^7 + (17/192)*n^6 + (269/144)*n^5 + (43949/1920)*n^4 + (228401/1440)*n^3 + (1054411/2016)*n^2 + (9941/56)*n - 2210 for n > 5.

A005024 Number of walks of length 2n+8 in the path graph P_9 from one end to the other.

Original entry on oeis.org

8, 43, 196, 820, 3264, 12597, 47652, 177859, 657800, 2417416, 8844448, 32256553, 117378336, 426440955, 1547491404, 5610955132, 20332248992, 73645557469, 266668876540, 965384509651, 3494279574288, 12646311635088, 45764967830976
Offset: 1

Views

Author

Keywords

References

  • W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005023. Truncated version of A094865.

Programs

  • Magma
    I:=[8, 43, 196, 820]; [n le 4 select I[n] else 8*Self(n-1)-21*Self(n-2)+20*Self(n-3)-5*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 08 2013
  • Maple
    a:=k->sum(binomial(8+2*k,10*j+k-2),j=ceil((2-k)/10)..floor((10+k)/10))-sum(binomial(8+2*k,10*j+k-1),j=ceil((1-k)/10)..floor((9+k)/10)): seq(a(k),k=1..28);
    A005024:=-(-8+21*z-20*z**2+5*z**3)/(5*z**2-5*z+1)/(z**2-3*z+1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(-5 z^3 + 20 z^2 - 21 z + 8)/((z^2 - 3 z + 1) (5 z^2 - 5 z + 1)), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 27 2011 *)
    CoefficientList[Series[(1 / x) (1 / (1 - 8 x + 21 x^2 - 20 x^3 + 5 x^4) - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 08 2013 *)
  • PARI
    x='x+O('x^66); Vec(-1+1/((1-3*x+x^2)*(1-5*x+5*x^2))) \\ Joerg Arndt, May 01 2013
    

Formula

From Emeric Deutsch, Apr 02 2004: (Start)
G.f. (assuming a(0)=1): 1/(1 - 8x + 21x^2 - 20x^3 + 5x^4) - 1.
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4). (End)
a(k) = sum(binomial(8+2k, 10j+k-2)-binomial(8+2k, 10j+k-1), j=-infinity..infinity) (a finite sum).

Extensions

Better definition from Emeric Deutsch, Apr 02 2004
Showing 1-3 of 3 results.