cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A259475 Array read by antidiagonals: row n gives coefficients of Taylor series expansion of 1/F_{n+1}(t), where F_i(t) is a Fibonacci polynomial defined by F_0=1, F_1=1, F_{i+1} = F_i-t*F_{i-1}.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 8, 8, 1, 0, 1, 5, 13, 21, 16, 1, 0, 1, 6, 19, 40, 55, 32, 1, 0, 1, 7, 26, 66, 121, 144, 64, 1, 0, 1, 8, 34, 100, 221, 364, 377, 128, 1, 0, 1, 9, 43, 143, 364, 728, 1093, 987, 256, 1, 0, 1, 10, 53, 196, 560, 1288, 2380, 3280, 2584, 512, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Examples

			The first few antidiagonals are:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  1,  0;
  1, 3,  4,  1,   0;
  1, 4,  8,  8,   1,   0;
  1, 5, 13, 21,  16,   1,  0;
  1, 6, 19, 40,  55,  32,  1, 0;
  1, 7, 26, 66, 121, 144, 64, 1, 0;
  ...
Square array starts:
  [0] 1, 0,  0,   0,    0,    0,     0,     0,      0,       0,       0, ...
  [1] 1, 1,  1,   1,    1,    1,     1,     1,      1,       1,       1, ...
  [2] 1, 2,  4,   8,   16,   32,    64,   128,    256,     512,    1024, ...
  [3] 1, 3,  8,  21,   55,  144,   377,   987,   2584,    6765,   17711, ...
  [4] 1, 4, 13,  40,  121,  364,  1093,  3280,   9841,   29524,   88573, ...
  [5] 1, 5, 19,  66,  221,  728,  2380,  7753,  25213,   81927,  266110, ...
  [6] 1, 6, 26, 100,  364, 1288,  4488, 15504,  53296,  182688,  625184, ...
  [7] 1, 7, 34, 143,  560, 2108,  7752, 28101, 100947,  360526, 1282735, ...
  [8] 1, 8, 43, 196,  820, 3264, 12597, 47652, 177859,  657800, 2417416, ...
  [9] 1, 9, 53, 260, 1156, 4845, 19551, 76912, 297275, 1134705, 4292145, ...
		

Crossrefs

The initial rows of the array are A000007, A000012, A000079, A001906, A003432, A005021, A094811, A094256.
A(n,n) gives A274969.
Cf. A309896.
A188843 is a variant without the first two rows and the first column, and the antidiagonals read in opposite direction.

Programs

  • Maple
    F:= proc(n) option remember;
          `if`(n<2, 1, expand(F(n-1)-t*F(n-2)))
        end:
    A:= (n, k)-> coeff(series(1/F(n+1), t, k+1), t, k):
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Jul 04 2015
  • Mathematica
    F[n_] := F[n] = If[n<2, 1, Expand[F[n-1] - t*F[n-2]]]; A[n_, k_] := SeriesCoefficient[1/F[n+1], { t, 0, k}]; Table[A[d-k, k], {d, 0, 12}, {k, 0, d}] // Flatten (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)
  • SageMath
    @cached_function
    def F(n, k):
        if k <  0: return 0
        if k == 0: return 1
        return sum((-1)^j*binomial(n-1-j,j+1)*F(n,k-2-2*j) for j in (0..(n-2)/2))
    def A(n, k): return F(n+1, 2*k)
    print([A(n-k, k) for n in (0..11) for k in (0..n)]) # Peter Luschny, Aug 21 2019

Formula

Let F(n, k) = Sum_{j=0..(n-2)/2} (-1)^j*binomial(n-1-j, j+1)*F(n, k-2-2*j) for k > 0; F(n, 0) = 1 and F(n, k) = 0 if k < 0. Then A(n, k) = F(n+1, 2*k). See [Shibukawa] and A309896. - Peter Luschny, Aug 21 2019

Extensions

More terms from Alois P. Heinz, Jul 04 2015

A188838 Number of n X 4 binary arrays without the pattern 0 1 diagonally or vertically.

Original entry on oeis.org

16, 55, 121, 221, 364, 560, 820, 1156, 1581, 2109, 2755, 3535, 4466, 5566, 6854, 8350, 10075, 12051, 14301, 16849, 19720, 22940, 26536, 30536, 34969, 39865, 45255, 51171, 57646, 64714, 72410, 80770, 89831, 99631, 110209, 121605, 133860, 147016, 161116
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2011

Keywords

Comments

Column 4 of A188843.

Examples

			Some solutions for 3 X 4:
..1..1..1..1....0..1..0..1....1..1..1..0....1..1..0..0....1..1..0..0
..0..1..1..1....0..0..0..0....1..1..1..0....1..1..0..0....0..0..0..0
..0..0..1..1....0..0..0..0....1..1..1..0....1..1..0..0....0..0..0..0
		

Crossrefs

Cf. A188843.

Formula

Empirical: a(n) = (1/24)*n^4 + (11/12)*n^3 + (155/24)*n^2 + (163/12)*n - 6 for n>1.
Empirical g.f.: x*(16 - 25*x + 6*x^2 + 6*x^3 - x^4 - x^5) / (1 - x)^5. - Colin Barker, Apr 30 2018

A188839 Number of n X 5 binary arrays without the pattern 0 1 diagonally or vertically.

Original entry on oeis.org

32, 144, 364, 728, 1288, 2108, 3264, 4845, 6954, 9709, 13244, 17710, 23276, 30130, 38480, 48555, 60606, 74907, 91756, 111476, 134416, 160952, 191488, 226457, 266322, 311577, 362748, 420394, 485108, 557518, 638288, 728119, 827750, 937959, 1059564
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2011

Keywords

Comments

Column 5 of A188843.

Examples

			Some solutions for 3 X 5:
..1..1..0..0..1....0..1..1..1..1....1..1..1..0..1....1..1..1..1..1
..1..1..0..0..0....0..0..0..0..0....1..1..1..0..0....0..1..0..1..0
..0..1..0..0..0....0..0..0..0..0....1..0..1..0..0....0..0..0..0..0
		

Crossrefs

Cf. A188843.

Formula

Empirical: a(n) = (1/120)*n^5 + (7/24)*n^4 + (89/24)*n^3 + (473/24)*n^2 + (1877/60)*n - 33 for n>2.
Empirical g.f.: x*(32 - 48*x - 20*x^2 + 64*x^3 - 20*x^4 - 12*x^5 + 4*x^6 + x^7) / (1 - x)^6. - Colin Barker, Apr 30 2018

A188840 Number of n X 6 binary arrays without the pattern 0 1 diagonally or vertically.

Original entry on oeis.org

64, 377, 1093, 2380, 4488, 7752, 12597, 19551, 29260, 42504, 60214, 83490, 113620, 152100, 200655, 261261, 336168, 427924, 539400, 673816, 834768, 1026256, 1252713, 1519035, 1830612, 2193360, 2613754, 3098862, 3656380, 4294668, 5022787, 5850537
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2011

Keywords

Comments

Column 6 of A188843.

Examples

			Some solutions for 3 X 6:
..1..1..1..1..1..1....1..1..1..1..1..1....0..0..0..1..1..0....1..1..1..1..1..1
..1..1..1..1..1..1....0..0..1..1..1..1....0..0..0..0..1..0....1..1..1..1..0..0
..0..0..1..1..0..1....0..0..0..1..1..0....0..0..0..0..0..0....1..1..0..1..0..0
		

Crossrefs

Cf. A188843.

Formula

Empirical: a(n) = (1/720)*n^6 + (17/240)*n^5 + (203/144)*n^4 + (647/48)*n^3 + (2659/45)*n^2 + (1379/20)*n - 143 for n>3.
Empirical g.f.: x*(64 - 71*x - 202*x^2 + 406*x^3 - 174*x^4 - 88*x^5 + 67*x^6 + 6*x^7 - 6*x^8 - x^9) / (1 - x)^7. - Colin Barker, Apr 30 2018

A188841 Number of n X 7 binary arrays without the pattern 0 1 diagonally or vertically.

Original entry on oeis.org

128, 987, 3280, 7753, 15504, 28101, 47652, 76912, 119416, 179630, 263120, 376740, 528840, 729495, 990756, 1326924, 1754848, 2294248, 2968064, 3802832, 4829088, 6081801, 7600836, 9431448, 11624808, 14238562, 17337424, 20993804, 25288472
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2011

Keywords

Comments

Column 7 of A188843.

Examples

			Some solutions for 3 X 7:
..1..1..0..0..1..1..1....1..1..1..1..1..1..1....1..0..0..1..1..0..0
..1..1..0..0..0..1..1....1..1..0..1..1..1..1....1..0..0..0..1..0..0
..1..1..0..0..0..0..0....0..0..0..0..0..0..0....1..0..0..0..0..0..0
		

Crossrefs

Cf. A188843.

Formula

Empirical: a(n) = (1/5040)*n^7 + (1/72)*n^6 + (143/360)*n^5 + (53/9)*n^4 + (33667/720)*n^3 + (12679/72)*n^2 + (9439/70)*n - 572 for n>4.
Empirical g.f.: x*(128 - 37*x - 1032*x^2 + 1981*x^3 - 992*x^4 - 605*x^5 + 700*x^6 - 58*x^7 - 96*x^8 + 3*x^9 + 8*x^10 + x^11) / (1 - x)^8. - Colin Barker, May 01 2018

A188842 Number of nX8 binary arrays without the pattern 0 1 diagonally or vertically.

Original entry on oeis.org

256, 2584, 9841, 25213, 53296, 100947, 177859, 297275, 476905, 740025, 1116765, 1645605, 2375100, 3365856, 4692780, 6447628, 8741876, 11709940, 15512772, 20341860, 26423661, 34024497, 43455945, 55080753, 69319315, 86656739
Offset: 1

Views

Author

R. H. Hardin Apr 12 2011

Keywords

Comments

Column 8 of A188843

Examples

			Some solutions for 3X8
..1..1..0..1..1..1..1..1....0..1..1..1..1..1..1..1....1..1..1..1..1..1..1..1
..1..1..0..0..1..1..1..1....0..0..1..0..0..1..0..1....1..1..1..0..0..0..0..0
..1..0..0..0..0..1..0..1....0..0..0..0..0..0..0..0....0..0..1..0..0..0..0..0
		

Formula

Empirical: a(n) = (1/40320)*n^8 + (23/10080)*n^7 + (17/192)*n^6 + (269/144)*n^5 + (43949/1920)*n^4 + (228401/1440)*n^3 + (1054411/2016)*n^2 + (9941/56)*n - 2210 for n>5
Showing 1-6 of 6 results.