A006053
a(n) = a(n-1) + 2*a(n-2) - a(n-3), with a(0) = a(1) = 0, a(2) = 1.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 9, 14, 28, 47, 89, 155, 286, 507, 924, 1652, 2993, 5373, 9707, 17460, 31501, 56714, 102256, 184183, 331981, 598091, 1077870, 1942071, 3499720, 6305992, 11363361, 20475625, 36896355, 66484244, 119801329, 215873462, 388991876, 700937471
Offset: 0
G.f. = x^2 + x^3 + 3*x^4 + 4*x^5 + 9*x^6 + 14*x^7 + 28*x^8 + 47*x^9 + ...
Regarding the description "number of compositions of n into floor(j/2) kinds of j's," the a(6)=9 compositions of 6 are (2a, 2a, 2a), (3a, 3a), (2a, 4a), (2a, 4b), (4a, 2a), (4b, 2a), (6a), (6b), (6c). - _Bridget Tenner_, Feb 25 2022
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications (2012).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Robin Chapman and Nicholas C. Singer, Eigenvalues of a bidiagonal matrix, Amer. Math. Monthly, 111 (2004), p. 441.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
- Jia Huang, A coin flip game and generalizations of Fibonacci numbers, arXiv:2501.07463 [math.CO], 2025. See p. 9.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 433
- Mohammed L. Nadji, Moussa Ahmia, Daniel F. Checa, and José L. Ramírez, Arndt Compositions with Restricted Parts, Palindromes, and Colored Variants, J. Int. Seq. (2025) Vol. 28, Issue 3, Article 25.3.6. See p. 11.
- László Németh and Dragan Stevanović, Graph solution of system of recurrence equations, Research Gate, 2023. See Table 2 at p. 6.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- R. Sachdeva and A. K. Agarwal, Combinatorics of certain restricted n-color composition functions, Discrete Mathematics, 340, (2017), 361-372.
- Genki Shibukawa, New identities for some symmetric polynomials and their applications, arXiv:1907.00334 [math.CA], 2019.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019).
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1).
-
a006053 n = a006053_list !! n
a006053_list = 0 : 0 : 1 : zipWith (+) (drop 2 a006053_list)
(zipWith (-) (map (2 *) $ tail a006053_list) a006053_list)
-- Reinhard Zumkeller, Oct 14 2011
-
[ n eq 1 select 0 else n eq 2 select 0 else n eq 3 select 1 else Self(n-1) +2*Self(n-2) -Self(n-3): n in [1..40] ]; // Vincenzo Librandi, Aug 19 2011
-
a[0]:=0: a[1]:=0: a[2]:=1: for n from 3 to 40 do a[n]:=a[n-1]+2*a[n-2]-a[n-3] od:seq(a[n], n=0..40); # Emeric Deutsch
A006053:=z**2/(1-z-2*z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation
-
LinearRecurrence[{1,2,-1}, {0,0,1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
-
{a(n) = if( n<0, n = -1-n; polcoeff( -1 / (1 - 2*x - x^2 + x^3) + x * O(x^n), n), polcoeff( x^2 / (1 - x - 2*x^2 + x^3) + x * O(x^n), n))}; /* Michael Somos, Nov 30 2014 */
-
@CachedFunction
def a(n): # a = A006053
if (n<3): return (n//2)
else: return a(n-1) + 2*a(n-2) - a(n-3)
[a(n) for n in range(41)] # G. C. Greubel, Feb 12 2023
A005021
Random walks (binomial transform of A006054).
Original entry on oeis.org
1, 5, 19, 66, 221, 728, 2380, 7753, 25213, 81927, 266110, 864201, 2806272, 9112264, 29587889, 96072133, 311945595, 1012883066, 3288813893, 10678716664, 34673583028, 112584429049, 365559363741, 1186963827439, 3854047383798, 12514013318097, 40632746115136
Offset: 0
- W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Andrei Asinowski and Michaela A. Polley, Patterns in rectangulations. Part I: T-like patterns, inversion sequence classes I(010, 101, 120, 201) and I(011, 201), and rushed Dyck paths, arXiv:2501.11781 [math.CO], 2025. See p. 26.
- Jean-Luc Baril and Helmut Prodinger, Enumeration of partial Lukasiewicz paths, arXiv:2205.01383 [math.CO], 2022.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- C. J. Everett and P. R. Stein, The combinatorics of random walk with absorbing barriers, Discrete Math. 17 (1977), no. 1, 27-45.
- C. J. Everett and P. R. Stein, The combinatorics of random walk with absorbing barriers, Discrete Math. 17 (1977), no. 1, 27-45. [Annotated scanned copy]
- G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
- S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987; arXiv:1008.3359 [math.AG], 2010-2011. - From _N. J. A. Sloane_, Dec 26 2012
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- N. J. A. Sloane, Transforms
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (5,-6,1).
-
I:=[1,5,19]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
-
a:=k->sum(binomial(5+2*k,7*j+k-2),j=ceil((2-k)/7)..floor((7+k)/7))-sum(binomial(5+2*k,7*j+k-1),j=ceil((1-k)/7)..floor((6+k)/7)): seq(a(k),k=0..25);
A005021:=-(z-1)*(z-5)/(-1+5*z-6*z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence apart from the initial 1
-
LinearRecurrence[{5,-6,1}, {1,5,19}, 50] (* Roman Witula, Aug 09 2012 *)
CoefficientList[Series[1/(1 - 5 x + 6 x^2 - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
-
x='x+O('x^30); Vec(1/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 19 2018
A080937
Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps with all values <= 5.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, 45542, 147798, 479779, 1557649, 5057369, 16420730, 53317085, 173118414, 562110290, 1825158051, 5926246929, 19242396629, 62479659622, 202870165265, 658715265222, 2138834994142, 6944753544643, 22549473023585
Offset: 0
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 131*x^6 + 417*x^7 + 1341*x^8 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..600
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 27.
- Jean-Luc Baril, Toufik Mansour, José L. Ramírez, and Mark Shattuck, Catalan words avoiding a pattern of length four, Univ. de Bourgogne (France, 2024). See p. 3.
- Jean-Luc Baril and Helmut Prodinger, Enumeration of partial Lukasiewicz paths, arXiv:2205.01383 [math.CO], 2022.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
- Wei Chen, Enumeration of Set Partitions Refined by Crossing and Nesting Numbers, MS Thesis, Department of Mathematics. Simon Fraser University, Fall 2014. Table 4.1, line k=2.
- Johann Cigler, Number of bounded Dyck paths with "negative length", MathOverflow question, Sep 26 2020.
- Michael Dairyko, Lara Pudwell, Samantha Tyner, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Paul Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641 [math.CO], 2011.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
- Stefan Felsner and Daniel Heldt, Lattice Path Enumeration and Toeplitz Matrices, J. Int. Seq. 18 (2015) # 15.1.3.
- Daniel Heldt, On the mixing time of the face flip-and up/down Markov chain for some families of graphs, Dissertation, Mathematik und Naturwissenschaften der Technischen Universitat Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften, 2016.
- Matthew Hyatt and Jeffrey Remmel, The classification of 231-avoiding permutations by descents and maximum drop, arXiv preprint arXiv:1208.1052 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 24 2012
- Aleksandar Ilic and Andreja Ilic, On the number of restricted Dyck paths, Filomat 25:3 (2011), 191-201; DOI: 10.2298/FIL1103191I.
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012 (Corollary 3, case k=5, pages 10-11). - From _N. J. A. Sloane_, May 09 2012
- Erkko Lehtonen and Tamás Waldhauser, Associative spectra of graph algebras I. Foundations, undirected graphs, antiassociative graphs, arXiv:2011.07621 [math.CO], 2020. See also J. of Algebraic Combinatorics (2021) Vol. 53, 613-638.
- Toufik Mansour and Mark Shattuck, Some enumerative results related to ascent sequences, arXiv preprint arXiv:1207.3755 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 22 2012
- Sophie Morier-Genoud, Valentin Ovsienko, and Serge Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, arXiv:1008.3359 [math.AG], 2010-2011. - From _N. J. A. Sloane_, Dec 26 2012
- Sophie Morier-Genoud, Valentin Ovsienko, and Serge Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987. - From _N. J. A. Sloane_, Dec 26 2012
- David Nečas and Ivan Ohlídal, Consolidated series for efficient calculation of the reflection and transmission in rough multilayers, Optics Express, Vol. 22, 2014, No. 4; DOI:10.1364/OE.22.004499.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Lara Pudwell, Pattern avoidance in trees, slides from a talk, mentions many sequences, 2012. - From _N. J. A. Sloane_, Jan 03 2013
- Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, 2014.
- Santiago Rojas-Rojas, Camila Muñoz, Edgar Barriga, Pablo Solano, Aldo Delgado, and Carla Hermann-Avigliano, Analytic Evolution for Complex Coupled Tight-Binding Models: Applications to Quantum Light Manipulation, arXiv:2310.12366 [quant-ph], 2023. See p. 12.
- Index entries for linear recurrences with constant coefficients, signature (5,-6,1).
Cf.
A033191 which essentially provide the same sequence for different limits and tend to
A000108.
-
I:=[1,1,2]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 09 2016
-
a:= n-> (<<0|1|0>, <0|0|1>, <1|-6|5>>^n. <<1, 1, 2>>)[1, 1]:
seq(a(n), n=0..35); # Alois P. Heinz, Nov 09 2012
-
nn=56;Select[CoefficientList[Series[(1-4x^2+3x^4)/(1-5x^2+6x^4-x^6), {x,0,nn}], x],#>0 &] (* Geoffrey Critzer, Jan 26 2014 *)
LinearRecurrence[{5,-6,1},{1,1,2},30] (* Jean-François Alcover, Jan 09 2016 *)
-
a=vector(99); a[1]=1; a[2]=2;a[3]=5; for(n=4,#a,a[n]=5*a[n-1]-6*a[n-2] +a[n-3]); a \\ Charles R Greathouse IV, Jun 10 2011
-
{a(n) = if( n<0, n = -n; polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, May 04 2012 */
A085810
Number of three-choice paths along a corridor of height 5, starting from the lower side.
Original entry on oeis.org
1, 2, 5, 13, 35, 96, 266, 741, 2070, 5791, 16213, 45409, 127206, 356384, 998509, 2797678, 7838801, 21963661, 61540563, 172432468, 483144522, 1353740121, 3793094450, 10628012915, 29779028189, 83438979561, 233790820762, 655067316176, 1835457822857, 5142838522138, 14409913303805
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Svjetlan Feretic, Generating functions for bi-wall directed polygons, in: Proc. of the Seventh Int. Conf. on Lattice Path Combinatorics and Applications (eds. S. Rinaldi and S. G. Mohanty), Siena, 2010, 147-151.
- Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), p. 22-31 (formula 5).
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-1).
-
I:=[1,2,5]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..35]]; // Vincenzo Librandi, Sep 18 2015
-
LinearRecurrence[{4,-3,-1}, {1,2,5}, 50] (* Roman Witula, Aug 09 2012 *)
CoefficientList[Series[(1 - 2 x)/(1 - 4 x + 3 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
-
x='x+O('x^30); Vec((1-2*x)/(1-4*x+3*x^2+x^3)) \\ G. C. Greubel, Apr 19 2018
A094790
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2*n, s(0) = 1, s(2n) = 3.
Original entry on oeis.org
1, 3, 9, 28, 89, 286, 924, 2993, 9707, 31501, 102256, 331981, 1077870, 3499720, 11363361, 36896355, 119801329, 388991876, 1263047761, 4101088878, 13316149700, 43237262993, 140390505643, 455845099957, 1480119728920
Offset: 1
- Michael De Vlieger, Table of n, a(n) for n = 1..1956
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Index entries for linear recurrences with constant coefficients, signature (5,-6,1).
-
[n le 3 select 3^(n-1) else 5*Self(n-1) -6*Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Feb 12 2023
-
with(GraphTheory):G:=PathGraph(6): A:= AdjacencyMatrix(G): nmax:=24; n2:=2*nmax+1: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[k,1],k=1..5); od: seq(a(2*n+1),n=0..nmax); # Johannes W. Meijer, May 29 2010
-
f[n_]:= FullSimplify[ TrigToExp[(2/7)Sum[ Sin[Pi*k/7]Sin[3Pi*k/7](2Cos[Pi*k/7] )^(2n), {k,6}]]];
Table[f[n], {n, 25}] (* Robert G. Wilson v, Jun 18 2004 *)
LinearRecurrence[{5,-6,1},{1,3,9},30] (* Harvey P. Dale, Nov 19 2019 *)
-
Vec(x*(1-2*x)/(1-5*x+6*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Jun 14 2015
-
@CachedFunction
def a(n): # a = A094790
if (n<4): return 3^(n-1)
else: return 5*a(n-1) - 6*a(n-2) + a(n-3)
[a(n) for n in range(1,41)] # G. C. Greubel, Feb 12 2023
A052975
Expansion of (1-2*x)*(1-x)/(1-5*x+6*x^2-x^3).
Original entry on oeis.org
1, 2, 6, 19, 61, 197, 638, 2069, 6714, 21794, 70755, 229725, 745889, 2421850, 7863641, 25532994, 82904974, 269190547, 874055885, 2838041117, 9215060822, 29921113293, 97153242650, 315454594314, 1024274628963, 3325798821581, 10798800928441, 35063486341682
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1047
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (5,-6,1).
-
I:=[1,2,6]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
-
spec := [S,{S=Sequence(Prod(Union(Sequence(Prod(Sequence(Z),Z)),Sequence(Z)),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
with(GraphTheory):G:=PathGraph(6): A:= AdjacencyMatrix(G): nmax:=25; n2:=2*nmax+1: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[k,1],k=1..5); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
-
LinearRecurrence[{5,-6,1}, {1,2,6}, 50] (* Roman Witula, Aug 09 2012 *)
CoefficientList[Series[(1 - 2 x) (1 - x)/(1 - 5 x + 6 x^2 - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
-
x='x+O('x^30); Vec((1-2*x)*(1-x)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 19 2018
A216201
Square array T, read by antidiagonals : T(n,k) = 0 if n-k>=3 or if k-n>=4, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 0, 0, 4, 6, 3, 0, 0, 4, 10, 9, 0, 0, 0, 0, 14, 19, 9, 0, 0, 0, 0, 14, 33, 28, 0, 0, 0, 0, 0, 0, 47, 61, 28, 0, 0, 0, 0, 0, 0, 47, 108, 89, 0, 0, 0, 0, 0, 0, 0, 0, 155, 197, 89, 0, 0, 0, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n = 0
1, 2, 3, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, ... row n = 1
1, 3, 6, 10, 14, 14, 0, 0, 0, 0, 0, 0, 0, ... row n = 2
0, 3, 9, 19, 33, 47, 47, 0, 0, 0, 0, 0, 0, ... row n = 3
0, 0, 9, 28, 61, 108, 155, 155, 0, 0, 0, 0, 0, ... row n = 4
0, 0, 0, 28, 89, 197, 352, 507, 507, 0, 0, 0, 0, ... row n = 5
0, 0, 0, 0, 89, 286, 638,1147,1652,1652, 0, 0, 0, ... row n = 6
...
- E. Lucas, Théorie des nombres, Tome 1, Albert Blanchard, Paris, 1958, p.89
A121442
Expansion of (1-x^2)/(1-x-9*x^2+x^3).
Original entry on oeis.org
1, 1, 9, 17, 97, 241, 1097, 3169, 12801, 40225, 152265, 501489, 1831649, 6192785, 22176137, 76079553, 269472001, 932011841, 3281180297, 11399814865, 39998425697, 139315579185, 487901595593, 1701743382561, 5953542163713, 20781331011169, 72661467102025
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (1, 9, -1).
-
I:=[1,1,9]; [n le 3 select I[n] else Self(n-1)+9*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
-
LinearRecurrence[{1,9,-1},{1,1,9},50] (* Roman Witula, Aug 08 2012 *)
CoefficientList[Series[(1 - x^2)/(1 - x - 9 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
-
Vec((1-x^2)/(1-x-9*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
A215404
a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3), with a(0)=0, a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 0, 1, 4, 13, 39, 113, 322, 910, 2561, 7192, 20175, 56563, 158535, 444276, 1244936, 3488381, 9774440, 27387681, 76739023, 215018609, 602469686, 1688083894, 4729907909, 13252910268, 37133833451, 104046695091, 291532369743, 816855560248, 2288778436672, 6413014696201
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Ilya Amburg, Krishna Dasaratha, Laure Flapan, Thomas Garrity, Chansoo Lee, Cornelia Mihaila, Nicholas Neumann-Chun, Sarah Peluse, and Matthew Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239 [math.CO], 2015.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-1).
-
I:=[0,0,1]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..35]]; // Vincenzo Librandi, Sep 18 2015
-
LinearRecurrence[{4,-3,-1}, {0,0,1}, 50]
CoefficientList[Series[x^2/(1 - 4 x + 3 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
-
Vec(x^2/(1-4*x+3*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
A216054
Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 6, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 0, 5, 9, 5, 0, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 19, 19, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 47, 66, 66, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 89, 155, 221, 221, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 0, 42, 131, 286, 507, 728, 728, 0, 0, ... row n=5
0, 0, 0, 0, 0, 0, 131, 417, 924, 1652, 2380, 2380, 0, ... row n=6
...
- E. Lucas, Théorie des nombres, A.Blanchard, Paris, 1958, Tome 1, p.89
-
Clear[t]; t[0, k_ /; k <= 5] = 1; t[n_, k_] /; k < n || k > n+5 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
Showing 1-10 of 13 results.
Comments