cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A094789 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 4.

Original entry on oeis.org

1, 4, 14, 47, 155, 507, 1652, 5373, 17460, 56714, 184183, 598091, 1942071, 6305992, 20475625, 66484244, 215873462, 700937471, 2275930827, 7389902771, 23994866364, 77910846021, 252974934692, 821404463698, 2667083556359
Offset: 1

Views

Author

Herbert Kociemba, Jun 11 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k.
With interpolated zeros (0,0,0,1,0,4,0,14,...) counts walks of length n between the start and fourth nodes on P_6. - Paul Barry, Jan 26 2005
The Hankel transforms of this sequence or of this sequence with the first term omitted give 1, -2, 1, 1, -2, 1, ... . - Wathek Chammam, Nov 16 2011
Diagonal of the square array A216201. - Philippe Deléham, Mar 28 2013

Crossrefs

Programs

  • Magma
    I:=[1,4,14]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014
    
  • Mathematica
    f[n_] := FullSimplify[ TrigToExp[(2/7)Sum[ Sin[Pi*k/7]Sin[4Pi*k/7](2Cos[Pi*k/7])^(2n + 1), {k, 1, 6}]]]; Table[ f[n], {n, 25}] (* Robert G. Wilson v, Jun 18 2004 *)
    LinearRecurrence[{5,-6,1}, {1,4,14}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[(x - 1) / (- 1 + 5 x - 6 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
  • PARI
    Vec(x*(x-1)/(-1 + 5*x - 6*x^2 + x^3) + O(x^40)) \\ Michel Marcus, Nov 10 2014

Formula

a(n) = (2/7)*Sum_{k = 1..6} sin(Pi*k/7)*sin(4*Pi*k/7)*(2*cos(Pi*k/7))^(2n + 1).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3).
G.f.: x*(x-1)/(-1 + 5*x - 6*x^2 + x^3). - Corrected by Vincenzo Librandi, Nov 10 2014
a(n) = 2^n*B(n; 1/2) = (1/7)*((c(1) - c(4))*(c(4))^(2n) + (c(2) - c(1))*(c(1))^(2n) + (c(4) - c(2))*(c(2))^(2n)), where c(j) := 2*cos(2*Pi*j/7). Here B(n; d), n in N, d in C denotes the respective quasi-Fibonacci number - see A121449 and Witula-Slota-Warzynski paper for details (see also A052975, A085810, A077998, A006054, A121442). - Roman Witula, Aug 09 2012
a(n+1) = A216201(n,n+2) = A216201(n,n+3). - Philippe Deléham, Mar 28 2013

A216226 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=1 or if k-n>=4, T(0,0) = T(0,1) = T(0,2) = T(0,3) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 3, 2, 0, 0, 0, 3, 5, 0, 0, 0, 0, 0, 8, 5, 0, 0, 0, 0, 0, 8, 13, 0, 0, 0, 0, 0, 0, 0, 21, 13, 0, 0, 0, 0, 0, 0, 0, 21, 34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 34, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2013

Keywords

Examples

			Square array begins:
1, 1, 1, 1,  0,  0,  0,   0,   0, 0, ... row n=0
0, 1, 2, 3,  3,  0,  0,   0,   0, 0, ... row n=1
0, 0, 2, 5,  8,  8,  0,   0,   0, 0, ... row n=2
0, 0, 0, 5, 13, 21, 21,   0,   0, 0, ... row n=3
0, 0, 0, 0, 13, 34, 55,  55,   0, 0, ... row n=4
0, 0, 0, 0,  0, 34, 89, 144, 144, 0, ... row n=5
...
		

Crossrefs

Cf. A000045 (Fibonacci numbers), A000285, A001519, A001906, A068914

Formula

T(n,n) = A000045(2*n-1) = A001519(n).
T(n,n+1) = A000045(2*n+1) = A001519(n+1).
T(n,n+2) = T(n,n+3) = A000045(2*n+2) = A001906(n+1).
Sum_{k, 0<=k<=n} T(n-k,k) = A000045(n+1).
Sum_{k, k>=0} T(n,k) = A000285(2*n+1).
Sum_{n, n>=0} T(n,k) = A000285(2*k-2), k>=2.

A216230 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=1 or if k-n>=2, T(0,0) = T(0,1) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2013

Keywords

Examples

			Square array begins:
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, ...
...
		

Crossrefs

Formula

T(n,n) = T(n,n+1) = 1.
Sum_{k, 0<=k<=n} T(n-k, k) = 1.

A223968 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 5 or if k-n >= 6, T(4,0) = T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 0, 0, 6, 15, 20, 15, 5, 0, 0, 6, 21, 35, 35, 20, 0, 0, 0, 0, 27, 56, 70, 55, 20, 0, 0, 0, 0, 27, 83, 126, 125, 75, 0, 0, 0, 0, 0, 0, 110, 209, 251, 200, 75, 0, 0, 0, 0, 0, 0, 110, 319, 460, 451, 275, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 30 2013

Keywords

Examples

			Square array begins:
1....1....1....1....1....1....0....0....0....0....0....0
1....2....3....4....5....6....6....0....0....0....0....0
1....3....6...10...15...21...27...27....0....0....0....0
1....4...10...20...35...56...83..110..110....0....0....0
1....5...15...35...70..126..209..319..429..429....0....0
0....5...20...55..125..251..460..779.1208.1637.1637....0
0....0...20...75..200..451..911.1690.2898.4535.6172.6172
...
Square array, read by diagonals, with 0 omitted:
1, 5, 20, 75, 275, 1001, 3639, 13243, 48280, ...
1, 5, 20, 75, 275, 1001, 3639, 13243, 48280, ...
1, 4, 15, 55, 200, 726, 2638, 9604, 35037, ...
1, 3, 10, 35, 125, 451, 1637, 5965, 21794, ...
1, 2, 6, 20, 70, 251, 911, 3327, 12190, 44744, ...
1, 3, 10, 35, 126, 460, 1690, 6225, 22950, ...
1, 4, 15, 56, 209, 779, 2898, 10760, 39882, ...
1, 5, 21, 83, 319, 1208, 4535, 16932, 62986, ...
1, 6, 27, 110, 429, 1637, 6172, 23104, 86090, ...
1, 6, 27, 110, 429, 1637, 6172, 23104, 86090, ...
		

Crossrefs

Formula

sum(T(n-k,k), 0<=k<=n) = A223940(n).
T(n,n+5) = T(n,n+4) = A221863(n).
T(n,n+3) = A221862(n).
T(n,n+2) = A221859(n).
T(n,n+1) = A216710(n).
T(n,n) = A224514(n).
T(n+1,n) = A224509(n).
T(n+2,n) = A220948(n).
T(n+3,n) = T(n+4,n) = A224422(n). - Philippe Deléham, Apr 13 2013

A216232 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 3 or if k-n >= 5, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 0, 1, 4, 6, 3, 0, 0, 5, 10, 9, 0, 0, 0, 5, 15, 19, 9, 0, 0, 0, 0, 20, 34, 28, 0, 0, 0, 0, 0, 20, 54, 62, 28, 0, 0, 0, 0, 0, 0, 74, 116, 90, 0, 0, 0, 0, 0, 0, 0, 74, 190, 206, 90, 0, 0, 0, 0, 0, 0, 0, 0, 264, 396, 296, 0, 0, 0, 0, 0, 0, 0, 0, 0, 264, 660, 692, 296, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2013

Keywords

Comments

Arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
  1, 1, 1,  1,  1,   0,   0,   0,   0,   0, 0, ... row n=0
  1, 2, 3,  4,  5,   5,   0,   0,   0,   0, 0, ... row n=1
  1, 3, 6, 10, 15,  20,  20,   0,   0,   0, 0, ... row n=2
  0, 3, 9, 19, 34,  54,  74,  74,   0,   0, 0, ... row n=3
  0, 0, 9, 28, 62, 116, 190, 264, 264,   0, 0, ... row n=4
  0, 0, 0, 28, 90, 206, 396, 660, 924, 924, 0, ... row n=5
  ...
Array, read by rows, with 0 omitted:
   1,   1,   1,   1,    1
   1,   2,   3,   4,    5,    5
   1,   3,   6,  10,   15,   20,   20
        3,   9,  19,   34,   54,   74,   74
             9,  28,   62,  116,  190,  264,  264
                 28,   90,  206,  396,  660,  924,  924
                       90,  296,  692, 1352, 2276, 3200, 3200
  ...
		

References

  • E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1958, Tome 1, p. 89.

Crossrefs

Formula

T(n,n) = A094817(n), for n > 0.
T(n+1,n) = T(n+2,n) = A094803(n).
T(n,n+1) = A007052(n).
T(n,n+2) = A094821(n+1).
T(n,n+3) = T(n,n+4) = A094806(n).
Sum_{k=0..n} T(n-k,k) = A217730(n). - Philippe Deléham, Mar 22 2013

A217770 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=4 or if k-n >= 6, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 0, 1, 5, 10, 10, 4, 0, 0, 6, 15, 20, 14, 0, 0, 0, 6, 21, 35, 34, 14, 0, 0, 0, 0, 27, 56, 69, 48, 0, 0, 0, 0, 0, 27, 83, 125, 117, 48, 0, 0, 0, 0, 0, 0, 110, 208, 242, 165, 0, 0, 0, 0, 0, 0, 0, 110, 318, 450, 407, 165
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
n=0: 1, 1,  1,  1,   1,   1,   0,   0,    0,    0,    0, 0, ...
n=1: 1, 2,  3,  4,   5,   6,   6,   0,    0,    0,    0, 0, ...
n=2: 1, 3,  6, 10,  15,  21,  27,  27,    0,    0,    0, 0, ...
n=3: 1, 4, 10, 20,  35,  56,  83, 110,  110,    0,    0, 0, ...
n=4: 0, 4, 14, 34,  69, 125, 208, 318,  428,  428,    0, 0, ...
n=5: 0, 0, 14, 48, 117, 242, 450, 768, 1196, 1624, 1624, 0, ...
...
Square array, read by rows, with 0 omitted:
...1,    1,     1,     1,     1,      1
...1,    2,     3,     4,     5,      6,      6
...1,    3,     6,    10,    15,     21,     27,     27
...1,    4,    10,    20,    35,     56,     83,    110,    110
...4,   14,    34,    69,   125,    208,    318,    428,    428
..14,   48,   117,   242,   450,    768,   1196,   1624,   1624
..48,  165,   407,   857,  1625,   2821,   4445,   6069,   6069
.165,  572,  1429,  3054,  5875,  10320,  16389,  22458,  22458
.572, 2001,  5055, 10930, 21250,  37639,  60097,  82555,  82555
2001, 7056, 17986, 39236, 76875, 136972, 219527, 302082, 302082
...
Triangle begins:
1
1, 1
1, 2,  1
1, 3,  3,  1
1, 4,  6,  4,  0
1, 5, 10, 10,  4,  0
0, 6, 15, 20, 14,  0, 0
0, 6, 21, 35, 34, 14, 0, 0
...
		

Crossrefs

Formula

T(n,n+4) = T(n,n+5) = A094788(n+2).
T(n,n+3) = A217783(n).
T(n,n+2) = A217779(n).
T(n,n+1) = A081567(n).
T(n,n) = A217782(n).
T(n+1,n) = A217778(n).
T(n+3,n) = T(n+2,n) = A094667(n+1).
Sum(T(n-k,k), k=0..n) = A217777(n).

A216238 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=1 or if k-n>=5, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 0, 4, 5, 0, 0, 0, 0, 4, 9, 5, 0, 0, 0, 0, 0, 13, 14, 0, 0, 0, 0, 0, 0, 13, 27, 14, 0, 0, 0, 0, 0, 0, 0, 40, 41, 0, 0, 0, 0, 0, 0, 0, 0, 40, 81, 41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121, 122, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2013

Keywords

Comments

Hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1,  1,  0,   0,   0,   0,    0,    0, ... row n=0
0, 1, 2, 3,  4,  4,   0,   0,   0,    0,    0, ... row n=1
0, 0, 2, 5,  9, 13,  13,   0,   0,    0,    0, ... row n=2
0, 0, 0, 5, 14, 27,  40,  40,   0,    0,    0, ... row n=3
0, 0, 0, 0, 14, 41,  81, 121, 121,    0,    0, ... row n=4
0, 0, 0, 0,  0, 41, 122, 243, 364,  364,    0, ... row n=5
0, 0, 0, 0,  0,  0, 122, 365, 729, 1093, 1093, ... row n=6
...
		

References

  • E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1958, Tome1, p.89

Crossrefs

Formula

T(n,n) = A124302(n).
T(n,n+1) = A124302(n+1).
T(n,n+2) = 3^n = A000244(n).
T(n,n+3) = T(n,n+4) = A003462(n+1).
Sum_{k, 0<=k<=n} T(n-k,k) = A182522(n).

A216235 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 2 or if k-n >= 5, T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 4, 5, 0, 0, 0, 5, 9, 5, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 507, 417, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2013

Keywords

Comments

Arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
  1, 1, 1,  1,  1,   0,   0,   0,   0,   0, ... row n=0
  1, 2, 3,  4,  5,   5,   0,   0,   0,   0, ... row n=1
  0, 2, 5,  9, 14,  19,  19,   0,   0,   0, ... row n=2
  0, 0, 5, 14, 28,  47,  66,  66,   0,   0, ... row n=3
  0, 0, 0, 14, 42,  89, 155, 221, 221,   0, ... row n=4
  0, 0, 0,  0, 42, 131, 286, 507, 728, 728, ... row n=5
  ...
		

Crossrefs

Formula

T(n,n) = T(n+1,n) = A080937(n+1).
T(n,n+1) = A094790(n+1).
T(n,n+2) = A094789(n+1).
T(n,n+3) = T(n,n+4) = A005021(n).
Sum_{k=0..n} T(n-k,k) = A028495(n+1). - Philippe Deléham, Mar 23 2013

A216236 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=4 or if k-n>=5, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 0, 0, 5, 10, 10, 4, 0, 0, 5, 15, 20, 14, 0, 0, 0, 0, 20, 35, 34, 14, 0, 0, 0, 0, 20, 55, 69, 48, 0, 0, 0, 0, 0, 0, 75, 124, 117, 48, 0, 0, 0, 0, 0, 0, 75, 199, 241, 165, 0, 0, 0, 0, 0, 0, 0, 0, 274, 440, 406, 165, 0, 0, 0, 0, 0, 0, 0, 0, 274, 714, 846, 571, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2013

Keywords

Comments

Arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...
1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, ...
1, 3, 6, 10, 15, 20, 20, 0, 0, 0, ...
1, 4, 10, 20, 35, 55, 75, 75, 0, 0, 0, ...
0, 4, 14, 34, 69, 124, 199, 274, 274, 0, 0, ...
0, 0, 14, 48, 117, 241, 440, 714, 988, 988, 0, ...
...
		

References

  • E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1958, Tome 1, p. 89

Crossrefs

Formula

T(n+3,n) = T(n+2,n) = A094827(n).
T(n+1,n) = A094832(n).
T(n,n) = A094854(n).
T(n,n+1) = A094855(n).
T(n,n+2) = A094833(n+1).
T(n,n+3) = T(n,n+4) = A094828(n).
Sum( T(n-k,k), 0<=k<=n ) = A217733(n). - Philippe Deléham, Mar 22 2013

A217765 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=3 or if k-n >= 6, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 0, 1, 4, 6, 3, 0, 1, 5, 10, 9, 0, 0, 0, 6, 15, 19, 9, 0, 0, 0, 6, 21, 34, 28, 0, 0, 0, 0, 0, 27, 55, 62, 28, 0, 0, 0, 0, 0, 27, 82, 117, 90, 0, 0, 0, 0, 0, 0, 0, 109, 199, 207, 90, 0, 0, 0, 0, 0, 0, 0, 109, 308, 406, 297, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 1, 0, 0, 0, ... row n=0
1, 2, 3, 4, 5, 6, 6, 0, 0, ... row n=1
1, 3, 6, 10, 15, 21, 27, 27, 0, 0, ... row n=2
0, 3, 9, 19, 34, 55, 82, 109, 109, 0, 0, ... row n=3
0, 0, 9, 28, 62, 117, 199, 308, 417, 417, 0, 0, ... row n=4
0, 0, 0, 28, 90, 207, 406, 714, 1131, 1548, 1548, 0, 0, ... row n=5
...
Square array, read by rows, with 0 omitted:
1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6, 6
1, 3, 6, 10, 15, 21, 27, 27
3, 9, 19, 34, 55, 82, 109, 109
9, 28, 62, 117, 199, 308, 417, 417
28, 90, 207, 406, 714, 1131, 1548, 1548
90, 297, 703, 1417, 2548, 4096, 5644, 5644
297, 1000, 2417, 4965, 9061, 14705, 20349, 20349
1000, 3417, 8382, 17443, 32148, 52497, 72846, 72846
3417, 11799, 29242, 61390, 113887, 186733, 259579, 259579
11799, 41041, 102431, 216318, 403051, 662630, 922209, 922209
...
		

Crossrefs

Cf. Similar sequences: A216201, A216210, A216216, A216218, ...

Formula

T(n,n+4) = T(n,n+5) = A094829(n+2).
T(n,n+3) = A094834(n+1).
T(n,n+2) = A094833(n+1).
T(n,n+1) = A094832(n).
T(n,n) = A094831(n).
T(n+1,n) = T(n+2,n) = A094826(n).
sum(T(n-k,k), 0<=k<=n) = A065455(n).
Showing 1-10 of 10 results.