A223940 Sums of antidiagonals of A223968.
1, 2, 4, 8, 16, 31, 61, 117, 228, 436, 845, 1615, 3120, 5965, 11501, 22001, 42365, 81091, 156010, 298777, 574450, 1100620, 2115150, 4053959, 7788126, 14931102, 28676899, 54990202, 105594073, 202519004, 388825095, 745825185, 1431776536, 2746639052
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-3,1).
Crossrefs
Cf. A223968
Programs
-
Mathematica
CoefficientList[Series[(1-x)(1+2x-x^3)/(1-x-4x^2+3x^3+3x^4-x^5), {x,0,40}],x] (* or *) LinearRecurrence[{1,4,-3,-3,1},{1,2,4,8,16},40] (* Harvey P. Dale, Jul 04 2019 *)
Formula
G.f.: (1-x) * (1+2*x-x^3) / (1-x-4*x^2+3*x^3+3*x^4-x^5).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 3*a(n-4) + a(n-5) with a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8, a(4) = 16, a(5) = 31.
a(n) = Sum_{k=0..n} A223968(n-k, k).
Extensions
a(32) corrected by Sean A. Irvine, May 19 2019
Comments