A223968
Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 5 or if k-n >= 6, T(4,0) = T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 0, 0, 6, 15, 20, 15, 5, 0, 0, 6, 21, 35, 35, 20, 0, 0, 0, 0, 27, 56, 70, 55, 20, 0, 0, 0, 0, 27, 83, 126, 125, 75, 0, 0, 0, 0, 0, 0, 110, 209, 251, 200, 75, 0, 0, 0, 0, 0, 0, 110, 319, 460, 451, 275, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Square array begins:
1....1....1....1....1....1....0....0....0....0....0....0
1....2....3....4....5....6....6....0....0....0....0....0
1....3....6...10...15...21...27...27....0....0....0....0
1....4...10...20...35...56...83..110..110....0....0....0
1....5...15...35...70..126..209..319..429..429....0....0
0....5...20...55..125..251..460..779.1208.1637.1637....0
0....0...20...75..200..451..911.1690.2898.4535.6172.6172
...
Square array, read by diagonals, with 0 omitted:
1, 5, 20, 75, 275, 1001, 3639, 13243, 48280, ...
1, 5, 20, 75, 275, 1001, 3639, 13243, 48280, ...
1, 4, 15, 55, 200, 726, 2638, 9604, 35037, ...
1, 3, 10, 35, 125, 451, 1637, 5965, 21794, ...
1, 2, 6, 20, 70, 251, 911, 3327, 12190, 44744, ...
1, 3, 10, 35, 126, 460, 1690, 6225, 22950, ...
1, 4, 15, 56, 209, 779, 2898, 10760, 39882, ...
1, 5, 21, 83, 319, 1208, 4535, 16932, 62986, ...
1, 6, 27, 110, 429, 1637, 6172, 23104, 86090, ...
1, 6, 27, 110, 429, 1637, 6172, 23104, 86090, ...
Cf. Similar sequences:
A214846,
A216054,
A216201,
A216210,
A216216,
A216218,
A216219,
A216220,
A216226,
A216228,
A216229,
A216230,
A216232,
A216235,
A216236,
A216238,
A217257,
A217315,
A217593,
A217765,
A217770
A217777
Expansion of (1+x)*(1+2*x)*(1-x)/(1-5*x^2+5*x^4).
Original entry on oeis.org
1, 2, 4, 8, 15, 30, 55, 110, 200, 400, 725, 1450, 2625, 5250, 9500, 19000, 34375, 68750, 124375, 248750, 450000, 900000, 1628125, 3256250, 5890625, 11781250, 21312500, 42625000, 77109375, 154218750, 278984375, 557968750, 1009375000, 2018750000, 3651953125
Offset: 0
A217778
Expansion of (1-x)^2*(1-3*x)/((1-3*x+x^2)*(1-5*x+5*x^2)).
Original entry on oeis.org
1, 3, 10, 34, 117, 407, 1429, 5055, 17986, 64278, 230473, 828391, 2982825, 10754459, 38811802, 140165322, 506449789, 1830590295, 6618524221, 23933966743, 86562282258, 313102489406, 1132598701585, 4097213146599, 14822370816337, 53623952036787
Offset: 0
-
m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)^2*(1-3*x)/((1-3*x+x^2)*(1-5*x+5*x^2)))); // Bruno Berselli, Mar 28 2013
-
LinearRecurrence[{8, -21, 20, -5}, {1, 3, 10, 34}, 26] (* Bruno Berselli, Mar 28 2013 *)
CoefficientList[Series[(1-x)^2(1-3x)/((1-3x+x^2)(1-5x+5x^2)),{x,0,30}],x] (* Harvey P. Dale, Sep 26 2023 *)
-
makelist(expand(((3+sqrt(5))*(5+sqrt(5))^n-(3-sqrt(5))*(5-sqrt(5))^n+(1+sqrt(5))*(3+sqrt(5))^n-(1-sqrt(5))*(3-sqrt(5))^n)/(4*2^n*sqrt(5))), n, 0, 25); /* Bruno Berselli, Mar 28 2013 */
A217779
Expansion of (1-4x+4*x^2)/((1-5x+5*x^2)*(1-3x+x^2)).
Original entry on oeis.org
1, 4, 15, 56, 208, 768, 2821, 10320, 37639, 136972, 497652, 1805984, 6548425, 23729916, 85953823, 311240928, 1126753336, 4078394080, 14760382029, 53415642632, 193291233367, 699417041844, 2530731376540, 9156839587776, 33131242464913, 119873850697588
Offset: 0
A217782
Expansion of (1-x)*(1-2x)*(1-3x)/((1-5x+5*x^2)*(1-3x+x^2)).
Original entry on oeis.org
1, 2, 6, 20, 69, 242, 857, 3054, 10930, 39236, 141153, 508598, 1834641, 6623450, 23926334, 86468052, 312587197, 1130277914, 4087621545, 14784539846, 53478888618, 193456813508, 699850536281, 2531866279710, 9159810802849, 33139021206962, 119894215708662
Offset: 0
A217783
Expansion of (1-x)*(1-2x)/((1-5x+5*x^2)*(1-3x+x^2)).
Original entry on oeis.org
1, 5, 21, 83, 318, 1196, 4445, 16389, 60097, 219527, 799734, 2907800, 10558041, 38297573, 138819053, 502925211, 1821362830, 6594366404, 23870720757, 86396702117, 312668994969, 1131463798415, 4094241931526, 14814592074288, 53603587025713, 193949782284101
Offset: 0
Showing 1-6 of 6 results.
Comments