1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 1, 1, 2, 5, 8, 1, 0, 1, 1, 2, 5, 13, 16, 1, 0, 1, 1, 2, 5, 14, 34, 32, 1, 0, 1, 1, 2, 5, 14, 41, 89, 64, 1, 0, 1, 1, 2, 5, 14, 42, 122, 233, 128, 1, 0, 1, 1, 2, 5, 14, 42, 131, 365, 610, 256, 1, 0, 1, 1, 2, 5, 14, 42, 132, 417, 1094, 1597, 512, 1, 0
Offset: 0
T(3,2) = 4 since the paths of length 2*3 (7 points) with all values less than or equal to 2 can take the routes 0101010, 0101210, 0121010 or 0121210, but not 0123210.
From _Peter Luschny_, Aug 27 2014: (Start)
Trees with n nodes and height <= h:
h\n 1 2 3 4 5 6 7 8 9 10 11
---------------------------------------------------------
[ 1] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A063524
[ 2] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[ 3] 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... A011782
[ 4] 1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, ... A001519
[ 5] 1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, ... A124302
[ 6] 1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, ... A080937
[ 7] 1, 1, 2, 5, 14, 42, 132, 428, 1416, 4744, 16016, ... A024175
[ 8] 1, 1, 2, 5, 14, 42, 132, 429, 1429, 4846, 16645, ... A080938
[ 9] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16778, ... A033191
[10] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, ... A211216
---------------------------------------------------------
The generating functions are listed in A211216. Note that the values up to the main diagonal are the Catalan numbers A000108.
(End)
Comments